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Setup
Ω is a finite set, G ≤ Sym(Ω), and m is a positive integer
G acts on Ωm: (α1, . . . , αm)g = (αg

1 , . . . , α
g
m).

Orbm(G ) is the set of orbits of this action (m-orbits).
G and H from Sym(Ω) are m-equivalent if Orbm(G ) = Orbm(H).
G and H are m-equivalent ⇒ 〈G ,H〉 is m-equivalent to them.

H.Wielandt (1969): The m-closure G (m) of G is the largest
subgroup of Sym(Ω), m-equivalent to G .

m-Closure problem

Given a finite permutation group G , find G (m).

Invm(G ) = (Ω,Orbm(G )) is a discrete structure on Ω consisting of
(colored) m-ary relations and G (m) is its full automorphism group:

G (m) = {g ∈ Sym(Ω) : ∆g = ∆,∆ ∈ Orbm(G )} = Aut(Invm(G ))
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Motivation
Γ = (Ω,E ) is a graph
Ω is the vertex set, E ⊆ Ω2 is the edge (arc) set

For graphs Γ = (Ω,E ) and Γ′ = (Ω′,E ′),
Iso(Γ, Γ′) = {f : Ω→ Ω′ a bijection | E f = E ′}.

Graph Iso
Given two graphs Γ and Γ′, test whether Iso(Γ, Γ′) = ∅.

Babai (2015): There is c > 0 such that for graphs Γ and Γ′ of size n
the set Iso(Γ, Γ′) can be found in a quasipolynomial time nO(log2 n).

If f ∈ Iso(Γ, Γ′) 6= ∅, then Iso(Γ, Γ′) = Aut(Γ)f .

Graph Iso is polynomial-time equivalent to

Graph Aut
Given graph Γ, find Aut(Γ).
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Graph isomorphism problem and m-dim WL-algorithm
c : Ωm → N is a coloring (m-coloring) of Ωm for some m ≥ 1.
Initial coloring c of a graph Γ = (Ω,E ) with |Ω| = n: for α, β ∈ Ωm,
c(α) = c(β) if the map αi 7→ βi induces Γ|{α} ' Γ|{β}.

m-dim WL-algorithm
1 For all α ∈ Ωm, find a multiset s(α) = {{sγ(α) : γ ∈ Ω}},

where sγ(α) = (c(γ, α2, . . . , αm), . . . , c(α1, . . . , αm−1, γ)).
2 Define c ′: c ′(α) < c ′(β)⇔ c(α) < c(β) or s(α) ≺ s(β).
3 Go to Step 1 if | Im(c)| 6= | Im(c ′)|; otherwise output c .

The complexity: O(m2nm+1 log n) (Immerman–Lander, 1990).
WLm-closure of graph Γ is WLm(Γ) = (Ω,R), where R is a partition
of Ωm into the color classes obtained by m-dim WL-algorithm.

Iso(Γ, Γ′) = Iso(WLm(Γ),WLm(Γ′)).

It suffices to deal with WL-stable discrete structures.
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WLm-closures and m-closures

Ω is a set of size n, G ≤ Sym(Ω), and m is a positive integer
G acts on Ωm: (α1, . . . , αm)g = (αg

1 , . . . , α
g
m).

Orbm(G ) is the set of orbits of this action (m-orbits).
Invm(G ) = (Ω,Orbm(G )) is WLm-stable:

WLm(Invm(G )) = Invm(G ).

One can consider m-Closure problem as a relaxation of Graph Aut.

m-Closure problem

Given a finite permutation group G , find G (m).

Input: generators of G (m is not a part of input)
Output: generators of G (m)

Computational complexity is a function on n = deg(G ) = |Ω|.
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Elementary properties of m-closures
Let G ,H ≤ Sym(Ω) and m a positive integer.

Taking m-closure is a closure operator:
G ≤ G (m), G (m) = (G (m))(m), and G ≤ H =⇒ G (m) ≤ H(m).
The group G is m-closed if G (m) = G .

It follows from the definition that

G (1) ≥ G (2) ≥ . . . ≥ G (m) ≥ . . . ≥ G (|Ω|−1) = G .

If G ≤ Sym(Ω) is m-transitive, then G (m) = Sym(Ω). In particular,

Ω = ∆1 ∪ . . . ∪∆s︸ ︷︷ ︸
1−orbits

=⇒ G (1) = Sym(∆1)× . . .× Sym(∆s).

If Gα1,...,αm−1 = 1 for some α1, . . . , αm−1 ∈ Ω, then G (m) = G .
Example: Ω = Fq, G = AGL1(q) = {x 7→ ax + b : a ∈ F×q , b ∈ Fq}
⇒ G (1) = G (2) = Sym(Ω), but G (3) = G .
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Known computational results

The 2-closure of a permutation group G of degree n can be found
in time polynomial in n provided

1 G is nilpotent (Ponomarenko, 1994)
2 G is of odd order (Evdokimov–Ponomarenko, 2001)
3 G is supersolvable (Ponomarenko–V., 2020)

4 G is a 3
2 -transitive group (Churikov–V., 2019)

5 G is a group of rank 3 (Skresanov, 2022).

Given m ≥ 3, the m-closure of a solvable permutation group of
degree n can be found in time nO(m) (Ponomarenko–V., 2023).
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Properties of m-closures of solvable groups

Let G ,H ≤ Sym(Ω) and m a positive integer.

Suppose m ≥ 2. Then
1 G is abelian ⇒ G (m) is abelian
2 G is of odd order ⇒ G (m) is of odd order
3 G is a p-group ⇒ G (m) is a p-group (Wielandt, 1969)
4 G is nilpotent ⇒ G (m) is nilpotent (2020).

Since AGL1(q)(2) = Sym(q), G is solvable 6⇒ G (2) is solvable.

O’Brien–Ponomarenko–V.–Vdovin (2021): If m ≥ 3 and G is
solvable, then G (m) is solvable.
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Babai–Luks algorithm

Luks (1982): Graph Iso can be solved in time nc , where c depends
only on deg(Γ).

Babai–Luks (1983): Let H ≤ Sym(Ω) be such that |H∆| ≤ nd for
every its primitive section ∆, and let Γ = (Ω,E ) be a graph. Then
Aut(Γ) ∩ H can be found in time nc , where c depends on d .

Corollary: Let H ≤ Sym(Ω) be such that |H∆| ≤ nd for every its
primitive section ∆, G ≤ Sym(Ω), and m ∈ N. Then G (m) ∩ H can
be found in time nc , where c depends on m and d .

G (m) ∩ H is called the relative m-closure of G with respect to H.

Pálfy (1982): If G is a primitive solvable group, then |G | ≤ n4.
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Inside the proof for solvable groups

A class X of (abstract) groups is said to be complete if it is closed
with respect to taking subgroups, quotients, and extensions.
Xn is the class of permutation groups from X of degree at most n.

Main Lemma (Ponomarenko-V.,2023): Let m, n ∈ N, m ≥ 3, and X
a complete class of groups closed with respect to taking m-closures.
The m-closure of a permutation group in Xn can be found in time
nO(m) by accessing two oracles:

1 for finding the m-closure of each primitive basic group in Xn

2 for finding the relative m-closure of every group in Xn with
respect to any group in Xn.

A permutation group is basic if it cannot be embedded in a wreath
product in the product action.
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If X is the class of solvable groups, then X is complete.
By O’Brien–Ponomarenko–V.–Vdovin theorem, it is closed with
respect taking m-closures for m ≥ 3.
If G ∈ Xn and m ≥ 3, then G (m) can be found in time nO(m) in
view of Main Lemma, since

1 If G is primitive basic, then either G is m-closed and
G (m) = G , or n ≤ d for some constant d ⇒ G (m) can be
easily found.

2 Relative m-closure of every group in Xn with respect to any
group in Xn can be found via the Babai–Luks algorithm
because of Pálfy’s theorem.

What is the next step?
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Alt(d)-free groups
For d ≥ 5, an (abstract) group is called Alt(d)-free, if it does not
contain section isomorphic to the alternating group of degree d .
Group H is a section of G if H is isomorphic to a homomorphic
image of some subgroup of G .

The class X of Alt(d)-free groups is complete.
If d ≥ 25, then the list of simple groups in X includes

the groups of order p for all primes p
all sporadic groups
all exceptional groups of Lie type
all classical groups of dimension less than d − 2.
all alternating groups of degree less than d .

Babai–Cameron–Pálfy (1982): If G is a primitive Alt(d)-free group,
then |G | ≤ nc , where c depends only on d .
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Main Results

Ponomarenko–Skresanov–V. (2024): Let X be a complete class
including all Alt(25)-free groups. Then the m-closure of every
permutation group from X belongs to X for each m ≥ 4.

Corollary: If G is an Alt(d)-free group with d ≥ 25, then G (m) is
Alt(d)-free group for m ≥ 4.

m = 4 is the best possible, because AGLk(2)(3) = Sym(2k).
d = 25 is the best possible (for m = 4), because 4-closure of the
Alt(9)-free Mathieu group M24 is Sym(24).
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Inside the proof

Let H = G (4). It suffices to show that H ∈ X.
We may assume that G and H are a primitive basic group, because

Let K ≤ Sym(Γ) and L ≤ Sym(∆). Then
1 K × L acts on Γ t∆ ⇒ (K × L)(m) = K (m) × L(m), m ≥ 1

(folklore);
2 K o L acts on

⊔
δ∈∆

Γδ ⇒ (K o L)(m) = K (m) o L(m), m ≥ 2

(Kalužnin–Klin, 1976);
3 K o L acts on Γ∆ ⇒ (K o L)(m) ≤ K (m) o L(m), m ≥ 3

(Ponomarenko–V., 2022).

In fact, K o L acts on Γ∆ ⇒ (K o L)(m) = K (m) o L[r ], m ≥ 2,
where L[r ] is the largest permutation group on ∆ having the same
orbits on the set of ordered partitions into at most r parts as L, and
r = min{|Orbm(K )|, |∆|} .
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Since G is primitive, Liebeck–Praeger–Saxl (1988,1992) ⇒

Soc(G ) = Soc(H) (∗)

Since G is basic, O’Nan-Scott theorem ⇒ one of the following hold:

1 G is almost simple,
2 G is in a diagonal action,
3 G is an affine group.

If G is almost simple, we are done by (∗).

If G is in a diagonal action, then Soc(G ) = Sk , where S is
nonabelian simple and G/S ≤ OutS × L, where L ≤ Sym(k).
If k ≤ 4 or Alt ≤ L, then H ∈ X, otherwise Fawcett (2013) ⇒
the base size number of G is 2 (i.e. Gα1,α2 = 1 for some
α1, α2 ∈ Ω), so H = G .

Thus, G and H are affine groups with the same socle.
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α1, α2 ∈ Ω), so H = G .

Thus, G and H are affine groups with the same socle.
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G and H are affine ⇒ n = pd , G = V : G0 and H = V : H0,
where G0,H0 ≤ GL(V ) = GLd(p) are irreducible and primitive.

Lemma. H0 = G
(3)
0 ∩ GL(V )

By Aschbacher classification of maximal subgroups in ΓL(e, q) and

Xu–Giudici–Li–Praeger (2011): G0 and H0 belong to the same
Aschbacher class,

it reamins to deal with the following cases:

G0 and H0 are tensor products,
G0 and H0 are of symplectic type,
G and H are quasisimple.
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Tensor products

Suppose that V is a vector space over a finite field F, G = V : G0

is a primitive affine group and F× ≤ G0 ≤ ΓL(V ). For m ≥ 4,
1 if G0 stabilizes a tensor decomposition V = X ⊗ Y over F,

dimX 6= dimY , and the m-closures of X : (G0)X and
Y : (G0)Y belong to X, then G (m) ∈ X;

2 if G0 preserves a tensor decomposition V =
⊗k

i=1 X over F,
k ≥ 2, π : G0 → Sym(k), and the m-closures of X : (G0)X and
π(G0) belong to X, then G (m) ∈ X.

In fact, for m-equivalent groups G and H, π(G0)[r ] = π(H0)[r ],
where L[r ] is the largest subgroup of Sym(k) having the same orbits
as L on the set of ordered partitions into at most r parts as L, and
r = min{|Orbm((G0)X/F×)|, k} .
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Following an idea from Liebeck–Shalev (2002), we obtain

If G0 and H0 are of symplectic type, then either G and H are
Alt(25)-free, or G has the base of size 3 and H = G .

Finally, we prove

If G0 and H0 are quasisimple, then either G and H are Alt(25)-free,
or Soc(G0/Z (G0)) = Soc(H0/Z (H0)).

These statements allow to complete the proof of the main result.
In particular, we have

If G is an Alt(d)-free group with d ≥ 25, then G (m) is Alt(d)-free
group for m ≥ 4.

Can one compute G (m) efficiently?
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Ponomarenko–V. (work in progress): For m ≥ 4 and d ≥ 25, the
m-closure of an Alt(d)-free group can be found in time nc , where c
depends on m and d .

Recall that if m, n ∈ N, m ≥ 3, and X is a complete class of groups
closed with respect to taking m-closures, then the m-closure of a
permutation group in Xn can be found in time nO(m) by accessing
two oracles:

1 for finding the m-closure of each primitive basic group in Xn

2 for finding the relative m-closure of every group in Xn with
respect to any group in Xn.

From our results and Babai–Cameron–Pálfy (1982): If m ≥ 4 and
G is a primitive Alt(d)-free group with d ≥ 25, then |G (m)| ≤ nc ,
where c depends only on d .

Thus, the relative m-closure of G can be found via the Babai–Luks
algorithm in time nc , where c depends on m and d .
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