On the closures of finite permutation groups

Andrey Vasil'ev

Novosibirsk State University and Sobolev Institute of Mathematics

Shijiazhuang, China 2024/12/01-05

Setup

 Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$. $\text{Orb}_m(G)$ is the set of orbits of this action (*m*-orbits). G and H from $\text{Sym}(\Omega)$ are *m*-equivalent if $\text{Orb}_m(G) = \text{Orb}_m(H)$. G and H are *m*-equivalent $\Rightarrow \langle G, H \rangle$ is *m*-equivalent to them.

H. Wielandt (1969): The *m*-closure $G^{(m)}$ of G is the largest subgroup of Sym(Ω), *m*-equivalent to G.

m-Closure problem

Given a finite permutation group G, find $G^{(m)}$.

Setup

 Ω is a finite set, $G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$. $\text{Orb}_m(G)$ is the set of orbits of this action (*m*-orbits). G and H from $\text{Sym}(\Omega)$ are *m*-equivalent if $\text{Orb}_m(G) = \text{Orb}_m(H)$. G and H are *m*-equivalent $\Rightarrow \langle G, H \rangle$ is *m*-equivalent to them.

H. Wielandt (1969): The *m*-closure $G^{(m)}$ of G is the largest subgroup of Sym(Ω), *m*-equivalent to G.

m-Closure problem

Given a finite permutation group G, find $G^{(m)}$.

 $Inv_m(G) = (\Omega, Orb_m(G))$ is a discrete structure on Ω consisting of (colored) *m*-ary relations and $G^{(m)}$ is its full automorphism group:

$$G^{(m)} = \{g \in \mathsf{Sym}(\Omega) : \Delta^g = \Delta, \Delta \in \mathsf{Orb}_m(G)\} = \mathsf{Aut}(\mathsf{Inv}_m(G))$$

Motivation

$$\begin{split} &\Gamma = (\Omega, E) \text{ is a graph} \\ &\Omega \text{ is the vertex set, } E \subseteq \Omega^2 \text{ is the edge (arc) set} \\ &\text{For graphs } \Gamma = (\Omega, E) \text{ and } \Gamma' = (\Omega', E'), \\ &\text{Iso}(\Gamma, \Gamma') = \{f : \Omega \to \Omega' \text{ a bijection } | E^f = E'\}. \end{split}$$

Graph Iso

Given two graphs Γ and $\Gamma',$ test whether $\mathsf{Iso}(\Gamma,\Gamma')=\varnothing.$

Babai (2015): There is c > 0 such that for graphs Γ and Γ' of size n the set $Iso(\Gamma, \Gamma')$ can be found in a quasipolynomial time $n^{O(\log^2 n)}$.

Motivation

 $\Gamma = (\Omega, E)$ is a graph Ω is the vertex set, $E \subseteq \Omega^2$ is the edge (arc) set For graphs $\Gamma = (\Omega, E)$ and $\Gamma' = (\Omega', E')$, $Iso(\Gamma, \Gamma') = \{f : \Omega \to \Omega' \text{ a bijection } | E^f = E'\}$. Graph Iso

Given two graphs Γ and Γ' , test whether $\mathsf{Iso}(\Gamma, \Gamma') = \varnothing$.

Babai (2015): There is c > 0 such that for graphs Γ and Γ' of size n the set $Iso(\Gamma, \Gamma')$ can be found in a quasipolynomial time $n^{O(\log^2 n)}$.

If $f \in \operatorname{Iso}(\Gamma, \Gamma') \neq \emptyset$, then $\operatorname{Iso}(\Gamma, \Gamma') = \operatorname{Aut}(\Gamma)f$.

Graph Iso is polynomial-time equivalent to

Graph Aut Given graph Γ, find Aut(Γ). Graph isomorphism problem and m-dim WL-algorithm $c: \Omega^m \to \mathbb{N}$ is a coloring (*m*-coloring) of Ω^m for some $m \ge 1$. Initial coloring c of a graph $\Gamma = (\Omega, E)$ with $|\Omega| = n$: for $\overline{\alpha}, \overline{\beta} \in \Omega^m$, $c(\overline{\alpha}) = c(\overline{\beta})$ if the map $\alpha_i \mapsto \beta_i$ induces $\Gamma|_{\{\overline{\alpha}\}} \simeq \Gamma|_{\{\overline{\beta}\}}$.

m-dim WL-algorithm

- **1** For all $\overline{\alpha} \in \Omega^m$, find a multiset $s(\overline{\alpha}) = \{\{s_{\gamma}(\overline{\alpha}) : \gamma \in \Omega\}\}$, where $s_{\gamma}(\overline{\alpha}) = (c(\gamma, \alpha_2, \dots, \alpha_m), \dots, c(\alpha_1, \dots, \alpha_{m-1}, \gamma))$.
- 2 Define $c': c'(\overline{\alpha}) < c'(\overline{\beta}) \Leftrightarrow c(\overline{\alpha}) < c(\overline{\beta}) \text{ or } s(\overline{\alpha}) \prec s(\overline{\beta}).$
- 3 Go to Step 1 if $|Im(c)| \neq |Im(c')|$; otherwise output c.

The complexity: $O(m^2 n^{m+1} \log n)$ (Immerman–Lander, 1990). WL_m-closure of graph Γ is WL_m(Γ) = (Ω , R), where R is a partition of Ω^m into the color classes obtained by *m*-dim WL-algorithm. Graph isomorphism problem and m-dim WL-algorithm $c: \Omega^m \to \mathbb{N}$ is a coloring (*m*-coloring) of Ω^m for some $m \ge 1$. Initial coloring c of a graph $\Gamma = (\Omega, E)$ with $|\Omega| = n$: for $\overline{\alpha}, \overline{\beta} \in \Omega^m$, $c(\overline{\alpha}) = c(\overline{\beta})$ if the map $\alpha_i \mapsto \beta_i$ induces $\Gamma|_{\{\overline{\alpha}\}} \simeq \Gamma|_{\{\overline{\beta}\}}$.

m-dim WL-algorithm

- **1** For all $\overline{\alpha} \in \Omega^m$, find a multiset $s(\overline{\alpha}) = \{\{s_{\gamma}(\overline{\alpha}) : \gamma \in \Omega\}\}$, where $s_{\gamma}(\overline{\alpha}) = (c(\gamma, \alpha_2, \dots, \alpha_m), \dots, c(\alpha_1, \dots, \alpha_{m-1}, \gamma))$.
- 2 Define $c': c'(\overline{\alpha}) < c'(\overline{\beta}) \Leftrightarrow c(\overline{\alpha}) < c(\overline{\beta}) \text{ or } s(\overline{\alpha}) \prec s(\overline{\beta}).$
- 3 Go to Step 1 if $|Im(c)| \neq |Im(c')|$; otherwise output c.

The complexity: $O(m^2 n^{m+1} \log n)$ (Immerman–Lander, 1990). WL_m-closure of graph Γ is WL_m(Γ) = (Ω , R), where R is a partition of Ω^m into the color classes obtained by *m*-dim WL-algorithm.

 $\operatorname{Iso}(\Gamma, \Gamma') = \operatorname{Iso}(\operatorname{WL}_m(\Gamma), \operatorname{WL}_m(\Gamma')).$

It suffices to deal with WL-stable discrete structures.

WL_m-closures and m-closures

 Ω is a set of size $n, G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$. Orb_m(G) is the set of orbits of this action (*m*-orbits). $\text{Inv}_m(G) = (\Omega, \text{Orb}_m(G))$ is WL_m-stable:

 $WL_m(Inv_m(G)) = Inv_m(G).$

One can consider *m*-Closure problem as a relaxation of Graph Aut.

WL_m-closures and m-closures

 Ω is a set of size $n, G \leq \text{Sym}(\Omega)$, and m is a positive integer G acts on Ω^m : $(\alpha_1, \ldots, \alpha_m)^g = (\alpha_1^g, \ldots, \alpha_m^g)$. Orb_m(G) is the set of orbits of this action (*m*-orbits). $\text{Inv}_m(G) = (\Omega, \text{Orb}_m(G))$ is WL_m-stable:

 $WL_m(Inv_m(G)) = Inv_m(G).$

One can consider *m*-Closure problem as a relaxation of Graph Aut.

m-Closure problem

Given a finite permutation group G, find $G^{(m)}$.

Input: generators of G (m is not a part of input) Output: generators of $G^{(m)}$

Computational complexity is a function on $n = \deg(G) = |\Omega|$.

Taking *m*-closure is a closure operator:

 $G \leq G^{(m)}, G^{(m)} = (G^{(m)})^{(m)}, \text{ and } G \leq H \Longrightarrow G^{(m)} \leq H^{(m)}.$ The group G is *m*-closed if $G^{(m)} = G$.

Taking *m*-closure is a closure operator:

 $G \leq G^{(m)}, G^{(m)} = (G^{(m)})^{(m)}, \text{ and } G \leq H \Longrightarrow G^{(m)} \leq H^{(m)}.$ The group G is *m*-closed if $G^{(m)} = G$.

It follows from the definition that

 $G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)} = G.$

Taking *m*-closure is a closure operator:

 $G \leq G^{(m)}, G^{(m)} = (G^{(m)})^{(m)}, \text{ and } G \leq H \Longrightarrow G^{(m)} \leq H^{(m)}.$ The group G is *m*-closed if $G^{(m)} = G$.

It follows from the definition that

$$G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)} = G.$$

If $G \leq \operatorname{Sym}(\Omega)$ is *m*-transitive, then $G^{(m)} = \operatorname{Sym}(\Omega)$. In particular,

$$\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}} \Longrightarrow G^{(1)} = \operatorname{Sym}(\Delta_1) \times \ldots \times \operatorname{Sym}(\Delta_s).$$

Taking *m*-closure is a closure operator:

 $G \leq G^{(m)}$, $G^{(m)} = (G^{(m)})^{(m)}$, and $G \leq H \Longrightarrow G^{(m)} \leq H^{(m)}$. The group G is *m*-closed if $G^{(m)} = G$.

It follows from the definition that

$$G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)} = G.$$

If $G \leq \operatorname{Sym}(\Omega)$ is *m*-transitive, then $G^{(m)} = \operatorname{Sym}(\Omega)$. In particular,

$$\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}} \Longrightarrow G^{(1)} = \operatorname{Sym}(\Delta_1) \times \ldots \times \operatorname{Sym}(\Delta_s).$$

If $G_{\alpha_1,\ldots,\alpha_{m-1}} = 1$ for some $\alpha_1,\ldots,\alpha_{m-1} \in \Omega$, then $G^{(m)} = G$.

Taking *m*-closure is a closure operator:

 $G \leq G^{(m)}$, $G^{(m)} = (G^{(m)})^{(m)}$, and $G \leq H \Longrightarrow G^{(m)} \leq H^{(m)}$. The group G is *m*-closed if $G^{(m)} = G$.

It follows from the definition that

$$G^{(1)} \geq G^{(2)} \geq \ldots \geq G^{(m)} \geq \ldots \geq G^{(|\Omega|-1)} = G.$$

If $G \leq \operatorname{Sym}(\Omega)$ is *m*-transitive, then $G^{(m)} = \operatorname{Sym}(\Omega)$. In particular,

$$\Omega = \underbrace{\Delta_1 \cup \ldots \cup \Delta_s}_{1-\text{orbits}} \Longrightarrow G^{(1)} = \operatorname{Sym}(\Delta_1) \times \ldots \times \operatorname{Sym}(\Delta_s).$$

If $G_{\alpha_1,...,\alpha_{m-1}} = 1$ for some $\alpha_1,...,\alpha_{m-1} \in \Omega$, then $G^{(m)} = G$. Example: $\Omega = \mathbb{F}_q$, $G = AGL_1(q) = \{x \mapsto ax + b : a \in \mathbb{F}_q^{\times}, b \in \mathbb{F}_q\}$ $\Rightarrow G^{(1)} = G^{(2)} = Sym(\Omega)$, but $G^{(3)} = G$.

Known computational results

The 2-closure of a permutation group G of degree n can be found in time polynomial in n provided

- G is nilpotent (Ponomarenko, 1994)
- 2 G is of odd order (Evdokimov–Ponomarenko, 2001)
- 3 G is supersolvable (Ponomarenko–V., 2020)

Known computational results

The 2-closure of a permutation group G of degree n can be found in time polynomial in n provided

- G is nilpotent (Ponomarenko, 1994)
- 2 G is of odd order (Evdokimov–Ponomarenko, 2001)
- 3 G is supersolvable (Ponomarenko–V., 2020)
- 4 G is a $\frac{3}{2}$ -transitive group (Churikov–V., 2019)
- **5** G is a group of rank 3 (Skresanov, 2022).

Known computational results

The 2-closure of a permutation group G of degree n can be found in time polynomial in n provided

- G is nilpotent (Ponomarenko, 1994)
- ② G is of odd order (Evdokimov–Ponomarenko, 2001)
- 3 G is supersolvable (Ponomarenko–V., 2020)
- ④ G is a $\frac{3}{2}$ -transitive group (Churikov–V., 2019)
- **5** G is a group of rank 3 (Skresanov, 2022).

Given $m \ge 3$, the *m*-closure of a solvable permutation group of degree *n* can be found in time $n^{O(m)}$ (Ponomarenko–V., 2023).

Properties of m-closures of solvable groups

Let $G, H \leq \text{Sym}(\Omega)$ and m a positive integer.

Suppose $m \ge 2$. Then

2 G is of odd order \Rightarrow $G^{(m)}$ is of odd order

3 G is a p-group \Rightarrow G^(m) is a p-group (Wielandt, 1969)

④ G is nilpotent \Rightarrow $G^{(m)}$ is nilpotent (2020).

Properties of m-closures of solvable groups

Let $G, H \leq \text{Sym}(\Omega)$ and m a positive integer.

Suppose $m \ge 2$. Then (1) G is abelian $\Rightarrow G^{(m)}$ is abelian (2) G is of odd order $\Rightarrow G^{(m)}$ is of odd order (3) G is a *p*-group $\Rightarrow G^{(m)}$ is a *p*-group (Wielandt, 1969) (4) G is nilpotent $\Rightarrow G^{(m)}$ is nilpotent (2020).

Since $AGL_1(q)^{(2)} = Sym(q)$, G is solvable $\neq G^{(2)}$ is solvable.

Properties of m-closures of solvable groups

Let $G, H \leq \text{Sym}(\Omega)$ and m a positive integer.

Suppose $m \ge 2$. Then (1) G is abelian $\Rightarrow G^{(m)}$ is abelian (2) G is of odd order $\Rightarrow G^{(m)}$ is of odd order (3) G is a *p*-group $\Rightarrow G^{(m)}$ is a *p*-group (Wielandt, 1969) (4) G is nilpotent $\Rightarrow G^{(m)}$ is nilpotent (2020).

Since $AGL_1(q)^{(2)} = Sym(q)$, G is solvable $\neq G^{(2)}$ is solvable.

O'Brien–Ponomarenko–V.–Vdovin (2021): If $m \ge 3$ and G is solvable, then $G^{(m)}$ is solvable.

Babai–Luks algorithm

Luks (1982): Graph Iso can be solved in time n^c , where c depends only on deg(Γ).

Babai–Luks (1983): Let $H \leq \text{Sym}(\Omega)$ be such that $|H^{\Delta}| \leq n^{d}$ for every its primitive section Δ , and let $\Gamma = (\Omega, E)$ be a graph. Then $\text{Aut}(\Gamma) \cap H$ can be found in time n^{c} , where c depends on d.

Babai–Luks algorithm

Luks (1982): Graph Iso can be solved in time n^c , where c depends only on deg(Γ).

Babai–Luks (1983): Let $H \leq \text{Sym}(\Omega)$ be such that $|H^{\Delta}| \leq n^{d}$ for every its primitive section Δ , and let $\Gamma = (\Omega, E)$ be a graph. Then $\text{Aut}(\Gamma) \cap H$ can be found in time n^{c} , where c depends on d.

Corollary: Let $H \leq \text{Sym}(\Omega)$ be such that $|H^{\Delta}| \leq n^{d}$ for every its primitive section Δ , $G \leq \text{Sym}(\Omega)$, and $m \in \mathbb{N}$. Then $G^{(m)} \cap H$ can be found in time n^{c} , where c depends on m and d.

 $G^{(m)} \cap H$ is called the relative *m*-closure of *G* with respect to *H*.

Babai–Luks algorithm

Luks (1982): Graph Iso can be solved in time n^c , where c depends only on deg(Γ).

Babai–Luks (1983): Let $H \leq \text{Sym}(\Omega)$ be such that $|H^{\Delta}| \leq n^{d}$ for every its primitive section Δ , and let $\Gamma = (\Omega, E)$ be a graph. Then $\text{Aut}(\Gamma) \cap H$ can be found in time n^{c} , where c depends on d.

Corollary: Let $H \leq \text{Sym}(\Omega)$ be such that $|H^{\Delta}| \leq n^{d}$ for every its primitive section Δ , $G \leq \text{Sym}(\Omega)$, and $m \in \mathbb{N}$. Then $G^{(m)} \cap H$ can be found in time n^{c} , where c depends on m and d.

 $G^{(m)} \cap H$ is called the relative *m*-closure of *G* with respect to *H*.

Pálfy (1982): If G is a primitive solvable group, then $|G| \le n^4$.

Inside the proof for solvable groups

A class \mathfrak{X} of (abstract) groups is said to be complete if it is closed with respect to taking subgroups, quotients, and extensions.

 \mathfrak{X}_n is the class of permutation groups from \mathfrak{X} of degree at most n.

Main Lemma (Ponomarenko-V.,2023): Let $m, n \in \mathbb{N}$, $m \geq 3$, and \mathfrak{X} a complete class of groups closed with respect to taking *m*-closures. The *m*-closure of a permutation group in \mathfrak{X}_n can be found in time $n^{O(m)}$ by accessing two oracles:

- (1) for finding the *m*-closure of each primitive basic group in \mathfrak{X}_n
- 2 for finding the relative *m*-closure of every group in \mathfrak{X}_n with respect to any group in \mathfrak{X}_n .

A permutation group is **basic** if it cannot be embedded in a wreath product in the product action.

If $\mathfrak X$ is the class of solvable groups, then $\mathfrak X$ is complete.

By O'Brien–Ponomarenko–V.–Vdovin theorem, it is closed with respect taking *m*-closures for $m \ge 3$.

If $G \in \mathfrak{X}_n$ and $m \ge 3$, then $G^{(m)}$ can be found in time $n^{O(m)}$ in view of Main Lemma, since

- If G is primitive basic, then either G is m-closed and G^(m) = G, or n ≤ d for some constant d ⇒ G^(m) can be easily found.
- 2 Relative *m*-closure of every group in X_n with respect to any group in X_n can be found via the Babai–Luks algorithm because of Pálfy's theorem.

If $\mathfrak X$ is the class of solvable groups, then $\mathfrak X$ is complete.

By O'Brien–Ponomarenko–V.–Vdovin theorem, it is closed with respect taking *m*-closures for $m \ge 3$.

If $G \in \mathfrak{X}_n$ and $m \ge 3$, then $G^{(m)}$ can be found in time $n^{O(m)}$ in view of Main Lemma, since

- **1** If G is primitive basic, then either G is m-closed and $G^{(m)} = G$, or $n \le d$ for some constant $d \Rightarrow G^{(m)}$ can be easily found.
- 2 Relative *m*-closure of every group in X_n with respect to any group in X_n can be found via the Babai–Luks algorithm because of Pálfy's theorem.

What is the next step?

Alt(d)-free groups

For $d \ge 5$, an (abstract) group is called Alt(*d*)-free, if it does not contain section isomorphic to the alternating group of degree *d*. Group *H* is a section of *G* if *H* is isomorphic to a homomorphic image of some subgroup of *G*.

Alt(d)-free groups

For $d \ge 5$, an (abstract) group is called Alt(*d*)-free, if it does not contain section isomorphic to the alternating group of degree *d*.

Group H is a section of G if H is isomorphic to a homomorphic image of some subgroup of G.

The class \mathfrak{X} of Alt(*d*)-free groups is complete.

If $d \geq 25$, then the list of simple groups in $\mathfrak X$ includes

- the groups of order p for all primes p
- all sporadic groups
- all exceptional groups of Lie type
- all classical groups of dimension less than d 2.
- all alternating groups of degree less than d.

Alt(d)-free groups

For $d \ge 5$, an (abstract) group is called Alt(*d*)-free, if it does not contain section isomorphic to the alternating group of degree *d*.

Group H is a section of G if H is isomorphic to a homomorphic image of some subgroup of G.

The class \mathfrak{X} of Alt(*d*)-free groups is complete.

If $d \geq 25$, then the list of simple groups in $\mathfrak X$ includes

- the groups of order p for all primes p
- all sporadic groups
- all exceptional groups of Lie type
- all classical groups of dimension less than d 2.
- all alternating groups of degree less than *d*.

Babai–Cameron–Pálfy (1982): If G is a primitive Alt(d)-free group, then $|G| \leq n^c$, where c depends only on d.

Main Results

Ponomarenko–Skresanov–V. (2024): Let \mathfrak{X} be a complete class including all Alt(25)-free groups. Then the *m*-closure of every permutation group from \mathfrak{X} belongs to \mathfrak{X} for each $m \geq 4$.

Corollary: If G is an Alt(d)-free group with $d \ge 25$, then $G^{(m)}$ is Alt(d)-free group for $m \ge 4$.

Main Results

Ponomarenko–Skresanov–V. (2024): Let \mathfrak{X} be a complete class including all Alt(25)-free groups. Then the *m*-closure of every permutation group from \mathfrak{X} belongs to \mathfrak{X} for each $m \geq 4$.

Corollary: If G is an Alt(d)-free group with $d \ge 25$, then $G^{(m)}$ is Alt(d)-free group for $m \ge 4$.

m = 4 is the best possible, because $AGL_k(2)^{(3)} = Sym(2^k)$. d = 25 is the best possible (for m = 4), because 4-closure of the Alt(9)-free Mathieu group M_{24} is Sym(24).

Inside the proof

Let $H = G^{(4)}$. It suffices to show that $H \in \mathfrak{X}$. We may assume that G and H are a primitive basic group, because

Let
$$K \leq Sym(\Gamma)$$
 and $L \leq Sym(\Delta)$. Then

- $\begin{array}{ll} \textcircled{2} & K \wr L \text{ acts on } \bigsqcup_{\delta \in \Delta} \Gamma_{\delta} \Rightarrow (K \wr L)^{(m)} = K^{(m)} \wr L^{(m)}, \ m \geq 2 \\ (\text{Kalužnin-Klin, 1976}); \end{array}$
- ③ $K \wr L$ acts on $\Gamma^{\Delta} \Rightarrow (K \wr L)^{(m)} \le K^{(m)} \wr L^{(m)}, m \ge 3$ (Ponomarenko–V., 2022).

In fact, $K \wr L$ acts on $\Gamma^{\Delta} \Rightarrow (K \wr L)^{(m)} = K^{(m)} \wr L^{[r]}$, $m \ge 2$, where $L^{[r]}$ is the largest permutation group on Δ having the same orbits on the set of ordered partitions into at most r parts as L, and $r = \min\{|\operatorname{Orb}_m(K)|, |\Delta|\}$. Since G is primitive, Liebeck–Praeger–Saxl (1988,1992) \Rightarrow

$$Soc(G) = Soc(H)$$
 (*)

Since G is primitive, Liebeck–Praeger–Saxl (1988,1992) \Rightarrow

$$Soc(G) = Soc(H)$$
 (*)

Since *G* is basic, O'Nan-Scott theorem \Rightarrow one of the following hold:

- G is almost simple,
- \bigcirc G is in a diagonal action,
- **3** G is an affine group.

Since G is primitive, Liebeck–Praeger–Saxl (1988,1992) \Rightarrow

$$Soc(G) = Soc(H)$$
 (*)

Since G is basic, O'Nan-Scott theorem \Rightarrow one of the following hold:

- G is almost simple,
- ② G is in a diagonal action,
- 3 G is an affine group.
- If G is almost simple, we are done by (*).

If G is in a diagonal action, then $Soc(G) = S^k$, where S is nonabelian simple and $G/S \leq Out S \times L$, where $L \leq Sym(k)$. If $k \leq 4$ or Alt $\leq L$, then $H \in \mathfrak{X}$, otherwise Fawcett (2013) \Rightarrow the base size number of G is 2 (i.e. $G_{\alpha_1,\alpha_2} = 1$ for some $\alpha_1, \alpha_2 \in \Omega$), so H = G.

Thus, G and H are affine groups with the same socle.

G and *H* are affine $\Rightarrow n = p^d$, $G = V : G_0$ and $H = V : H_0$, where $G_0, H_0 \leq GL(V) = GL_d(p)$ are irreducible and primitive.

Lemma. $H_0 = G_0^{(3)} \cap \operatorname{GL}(V)$

G and *H* are affine $\Rightarrow n = p^d$, $G = V : G_0$ and $H = V : H_0$, where $G_0, H_0 \leq GL(V) = GL_d(p)$ are irreducible and primitive.

Lemma. $H_0 = G_0^{(3)} \cap \operatorname{GL}(V)$

By Aschbacher classification of maximal subgroups in $\Gamma L(e, q)$ and

Xu–Giudici–Li–Praeger (2011): G_0 and H_0 belong to the same Aschbacher class,

G and H are affine $\Rightarrow n = p^d$, $G = V : G_0$ and $H = V : H_0$, where $G_0, H_0 \leq GL(V) = GL_d(p)$ are irreducible and primitive.

Lemma. $H_0 = G_0^{(3)} \cap \operatorname{GL}(V)$

By Aschbacher classification of maximal subgroups in $\Gamma L(e, q)$ and

Xu–Giudici–Li–Praeger (2011): G_0 and H_0 belong to the same Aschbacher class,

it reamins to deal with the following cases:

- G_0 and H_0 are tensor products,
- G_0 and H_0 are of symplectic type,
- G and H are quasisimple.

Tensor products

Suppose that V is a vector space over a finite field \mathbb{F} , $G = V : G_0$ is a primitive affine group and $\mathbb{F}^{\times} \leq G_0 \leq \Gamma L(V)$. For $m \geq 4$,

- if G₀ stabilizes a tensor decomposition V = X ⊗ Y over F, dim X ≠ dim Y, and the *m*-closures of X : (G₀)_X and Y : (G₀)_Y belong to X, then G^(m) ∈ X;
- ② if G_0 preserves a tensor decomposition $V = \bigotimes_{i=1}^k X$ over \mathbb{F} , $k \ge 2, \pi : G_0 \to \text{Sym}(k)$, and the m-closures of $X : (G_0)_X$ and $\pi(G_0)$ belong to \mathfrak{X} , then $G^{(m)} \in \mathfrak{X}$.

Tensor products

Suppose that V is a vector space over a finite field \mathbb{F} , $G = V : G_0$ is a primitive affine group and $\mathbb{F}^{\times} \leq G_0 \leq \Gamma L(V)$. For $m \geq 4$,

- if G₀ stabilizes a tensor decomposition V = X ⊗ Y over F, dim X ≠ dim Y, and the *m*-closures of X : (G₀)_X and Y : (G₀)_Y belong to X, then G^(m) ∈ X;
- ② if G_0 preserves a tensor decomposition $V = \bigotimes_{i=1}^k X$ over \mathbb{F} , $k \ge 2, \pi : G_0 \to \text{Sym}(k)$, and the m-closures of $X : (G_0)_X$ and $\pi(G_0)$ belong to \mathfrak{X} , then $G^{(m)} \in \mathfrak{X}$.

In fact, for *m*-equivalent groups *G* and *H*, $\pi(G_0)^{[r]} = \pi(H_0)^{[r]}$, where $L^{[r]}$ is the largest subgroup of Sym(*k*) having the same orbits as *L* on the set of ordered partitions into at most *r* parts as *L*, and $r = \min\{|\operatorname{Orb}_m((G_0)_X/\mathbb{F}^{\times})|, k\}$.

Following an idea from Liebeck-Shalev (2002), we obtain

If G_0 and H_0 are of symplectic type, then either G and H are Alt(25)-free, or G has the base of size 3 and H = G.

Following an idea from Liebeck-Shalev (2002), we obtain

If G_0 and H_0 are of symplectic type, then either G and H are Alt(25)-free, or G has the base of size 3 and H = G.

Finally, we prove

If G_0 and H_0 are quasisimple, then either G and H are Alt(25)-free, or $Soc(G_0/Z(G_0)) = Soc(H_0/Z(H_0))$.

These statements allow to complete the proof of the main result.

Following an idea from Liebeck-Shalev (2002), we obtain

If G_0 and H_0 are of symplectic type, then either G and H are Alt(25)-free, or G has the base of size 3 and H = G.

Finally, we prove

If G_0 and H_0 are quasisimple, then either G and H are Alt(25)-free, or $Soc(G_0/Z(G_0)) = Soc(H_0/Z(H_0))$.

These statements allow to complete the proof of the main result. In particular, we have

If G is an Alt(d)-free group with $d \ge 25$, then $G^{(m)}$ is Alt(d)-free group for $m \ge 4$.

Can one compute $G^{(m)}$ efficiently?

Ponomarenko–V. (work in progress): For $m \ge 4$ and $d \ge 25$, the *m*-closure of an Alt(*d*)-free group can be found in time n^c , where *c* depends on *m* and *d*.

Ponomarenko–V. (work in progress): For $m \ge 4$ and $d \ge 25$, the *m*-closure of an Alt(*d*)-free group can be found in time n^c , where *c* depends on *m* and *d*.

Recall that if $m, n \in \mathbb{N}$, $m \ge 3$, and \mathfrak{X} is a complete class of groups closed with respect to taking *m*-closures, then the *m*-closure of a permutation group in \mathfrak{X}_n can be found in time $n^{O(m)}$ by accessing two oracles:

- (1) for finding the *m*-closure of each primitive basic group in \mathfrak{X}_n
- 2) for finding the relative *m*-closure of every group in \mathfrak{X}_n with respect to any group in \mathfrak{X}_n .

From our results and Babai–Cameron–Pálfy (1982): If $m \ge 4$ and G is a primitive Alt(d)-free group with $d \ge 25$, then $|G^{(m)}| \le n^c$, where c depends only on d.

Thus, the relative *m*-closure of *G* can be found via the Babai–Luks algorithm in time n^c , where *c* depends on *m* and *d*.

- I. Ponomarenko, A. V. Vasil'ev, Two-closure of supersolvable permutation group in polynomial time, Comp. Compl. (2020)
- I. Ponomarenko, A. V. Vasil'ev, *The closures of wreath products in product action*, Algebra Logic (2021)
- E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, E. Vdovin, *The 3-closure of a solvable permutation group is solvable*, J. Algebra (2022)
- I. Ponomarenko, A. V. Vasil'ev, On computing the closures of solvable permutation groups, Int. J. Algebra Comput. (2024)
- I. Ponomarenko, S. V. Skresanov, A. V. Vasil'ev, Closures of permutation groups with restricted nonabelian composition factors, arXiv:2406.03780 (2024)
- I. Ponomarenko, A. V. Vasil'ev, Computing the closures of Alt(d)-free permutation groups, in preparation.

- I. Ponomarenko, A. V. Vasil'ev, Two-closure of supersolvable permutation group in polynomial time, Comp. Compl. (2020)
- I. Ponomarenko, A. V. Vasil'ev, *The closures of wreath products in product action*, Algebra Logic (2021)
- E. A. O'Brien, I. Ponomarenko, A. V. Vasil'ev, E. Vdovin, *The 3-closure of a solvable permutation group is solvable*, J. Algebra (2022)
- I. Ponomarenko, A. V. Vasil'ev, On computing the closures of solvable permutation groups, Int. J. Algebra Comput. (2024)
- I. Ponomarenko, S. V. Skresanov, A. V. Vasil'ev, Closures of permutation groups with restricted nonabelian composition factors, arXiv:2406.03780 (2024)
- I. Ponomarenko, A. V. Vasil'ev, *Computing the closures of* Alt(*d*)-free permutation groups, in preparation.

The work is supported by the Russian Science Foundation, project no. 24-11-00127, https://rscf.ru/en/project/24-11-00127/