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Setup
Q is a finite set, G < Sym(Q2), and m is a positive integer
G acts on Q™: (aq,...,am)é = (af,...,af).
Orbm(G) is the set of orbits of this action (m-orbits).
G and H from Sym(Q) are m-equivalent if Orb,(G) = Orby,(H).
G and H are m-equivalent = (G, H) is m-equivalent to them.

H. Wielandt (1969): The m-closure G{™) of G is the largest
subgroup of Sym(£2), m-equivalent to G.

m-Closure problem

Given a finite permutation group G, find G(™).
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G and H from Sym(Q) are m-equivalent if Orb,(G) = Orby,(H).

G and H are m-equivalent = (G, H) is m-equivalent to them.

H. Wielandt (1969): The m-closure G{™) of G is the largest
subgroup of Sym(£2), m-equivalent to G.

m-Closure problem

Given a finite permutation group G, find G(™).

Invm(G) = (2, 0rby(G)) is a discrete structure on € consisting of
(colored) m-ary relations and G(™ s its full automorphism group:

G(m = {g € Sym(Q) : A8 = A, A € Orb,,,(G)} = Aut(Inv,,(G)) J
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Motivation
= (Q,E) is a graph
Q is the vertex set, E C Q2 is the edge (arc) set
For graphs ' = (Q, E) and " = (', E'),
Iso(T, ") = {f : Q — Q' a bijection | Ef = E'}.
Graph Iso
Given two graphs I and I, test whether Iso(I', ") = @.

Babai (2015): There is ¢ > 0 such that for graphs I and I of size n
the set Iso(I", ") can be found in a quasipolynomial time nO(log® n),

V.
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= (Q,E) is a graph
Q is the vertex set, E C Q2 is the edge (arc) set
For graphs ' = (Q, E) and " = (', E'),
Iso(T, ") = {f : Q — Q' a bijection | Ef = E'}.
Graph Iso
Given two graphs I' and I, test whether Iso(I", ") = @.

Babai (2015): There is ¢ > 0 such that for graphs I and I of size n
OUoanX

the set Iso(I", ") can be found in a quasipolynomial time n

If £ €lso(l,T") # &, then Iso(I', ") = Aut(T')f.
Graph Iso is polynomial-time equivalent to

Graph Aut
Given graph I, find Aut(I).
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Graph isomorphism problem and m-dim WL-algorithm
c: Q™ — Nis a coloring (m-coloring) of Q™ for some m > 1.
Initial coloring ¢ of a graph ' = (Q, E) with |Q| = n: for @, 8 € Q™,
c(@) = c(B) if the map o — f3; induces Iz} ~ r\{m.
m-dim WL-algorithm

@ Forall@ € Q7, find a multiset s(@) = {{sy(@) : v € Q}},

where s, (@) = (c(v, a2, ..., am), ..., c(a1,...,am-1,7)).
@ Define ¢’: /(@) < ¢'(B) & c(@) < c(B) or s(@) < s(B).
@ Go to Step 1if [Im(c)| # | Im(c’)|; otherwise output c.

The complexity: O(m?n™!log n) (Immerman-Lander, 1990).
WL ,-closure of graph I is WL,(I') = (€2, R), where R is a partition
of Q™ into the color classes obtained by m-dim WL-algorithm.
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@ Forall@ € Q7, find a multiset s(@) = {{sy(@) : v € Q}},

where s, (@) = (c(v, a2, ..., am), ..., c(a1,...,am-1,7)).
@ Define ¢’: /(@) < ¢'(B) & c(@) < c(B) or s(@) < s(B).
@ Go to Step 1if [Im(c)| # | Im(c’)|; otherwise output c.

The complexity: O(m?n™!log n) (Immerman-Lander, 1990).
WL ,-closure of graph I is WL,(I') = (€2, R), where R is a partition
of Q™ into the color classes obtained by m-dim WL-algorithm.

Iso(T", ") = Iso(WLm(T), WL (I")). J

It suffices to deal with WL-stable discrete structures.
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WL ,,-closures and m-closures

Q is a set of size n, G < Sym(f2), and m is a positive integer
G acts on Q™: (aq,...,am)é = (af,....a5).

Orbm(G) is the set of orbits of this action (m-orbits).
Invm(G) = (Q2,0rbpn(G)) is WL y,-stable:

WLn(INVim(G)) = Invim(G). J

One can consider m-Closure problem as a relaxation of Graph Aut.
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WL ,,-closures and m-closures

Q is a set of size n, G < Sym(f2), and m is a positive integer
G acts on Q™: (aq,...,am)é = (af,....a5).
Orbm(G) is the set of orbits of this action (m-orbits).

Invm(G) = (Q2,0rbpn(G)) is WL y,-stable:

WLn(INVim(G)) = Invim(G). J

One can consider m-Closure problem as a relaxation of Graph Aut.

m-Closure problem J

Given a finite permutation group G, find G(™).

Input: generators of G (m is not a part of input)
Output: generators of G(™)
Computational complexity is a function on n = deg(G) = |Q|.
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Elementary properties of m-closures
Let G, H < Sym(Q2) and m a positive integer.

Taking m-closure is a closure operator:
G < GM, M = (GM)M and 6 < H= G(M < H(M,
The group G is m-closed if G(™ = G.
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Elementary properties of m-closures
Let G, H < Sym(Q2) and m a positive integer.

Taking m-closure is a closure operator:
G < GM, M = (GM)M and 6 < H= G(M < H(M,
The group G is m-closed if G(™ = G.

It follows from the definition that

GO >c@ > >cm>  >cle-l) =g, )

If G < Sym(Q) is m-transitive, then G(™ = Sym(Q). In particular,

Q=A1U...UA; = GN) =Sym(A1) x ... x Sym(As).
N’

1—orbits

If Gay,..apy =1 for some ai,...,am—1 € Q, then Gm = G.
Example: Q = Fy, G = AGL1(q) = {x — ax+b:acF;,beFy}
= GO = 6@ =Sym(Q), but G®) = G.
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Known computational results

The 2-closure of a permutation group G of degree n can be found
in time polynomial in n provided

@ G is nilpotent (Ponomarenko, 1994)
@ G is of odd order (Evdokimov—Ponomarenko, 2001)
@ G is supersolvable (Ponomarenko-V., 2020)
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The 2-closure of a permutation group G of degree n can be found
in time polynomial in n provided

@ G is nilpotent (Ponomarenko, 1994)

@ G is of odd order (Evdokimov—Ponomarenko, 2001)
@ G is supersolvable (Ponomarenko-V., 2020)

@ G is a 3-transitive group (Churikov-V., 2019)

® G is a group of rank 3 (Skresanov, 2022).

Given m > 3, the m-closure of a solvable permutation group of
degree n can be found in time n®(™) (Ponomarenko-V., 2023).
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Properties of m-closures of solvable groups

Let G, H < Sym(Q2) and m a positive integer.

Suppose m > 2. Then
@ G is abelian = G(™ s abelian
@ G is of odd order = G(™ is of odd order
@ G isa p-group = G(™ is a p-group (Wielandt, 1969)
@ G is nilpotent = G(™ is nilpotent (2020).
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Properties of m-closures of solvable groups

Let G, H < Sym(Q2) and m a positive integer.

Suppose m > 2. Then
@ G is abelian = G(™ s abelian
@ G is of odd order = G(™ is of odd order
@ G isa p-group = G(™ is a p-group (Wielandt, 1969)
@ G is nilpotent = G(™ is nilpotent (2020).

Since AGL1(g)®® = Sym(q), G is solvable % G(?) is solvable.

O'Brien—Ponomarenko-V.-Vdovin (2021): If m > 3 and G is
solvable, then G(™) is solvable.
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Babai-Luks algorithm

Luks (1982): Graph Iso can be solved in time n°, where ¢ depends
only on deg(I).

Babai-Luks (1983): Let H < Sym() be such that |H2| < n? for
every its primitive section A, and let I = (€, E) be a graph. Then
Aut(I') N H can be found in time n, where ¢ depends on d.
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Babai-Luks algorithm

Luks (1982): Graph Iso can be solved in time n°, where ¢ depends
only on deg(I).

Babai-Luks (1983): Let H < Sym() be such that |H2| < n? for
every its primitive section A, and let I = (€, E) be a graph. Then
Aut(I') N H can be found in time n, where ¢ depends on d.

Corollary: Let H < Sym(Q) be such that |H2| < n? for every its
primitive section A, G < Sym(Q2), and m € N. Then G(M N H can
be found in time n€, where ¢ depends on m and d.

G(M N H is called the relative m-closure of G with respect to H.

Palfy (1982): If G is a primitive solvable group, then |G| < n*. J




Inside the proof for solvable groups

A class X of (abstract) groups is said to be complete if it is closed
with respect to taking subgroups, quotients, and extensions.

X, is the class of permutation groups from X of degree at most n.

Main Lemma (Ponomarenko-V.,2023): Let m,n € N, m > 3, and X
a complete class of groups closed with respect to taking m-closures.
The m-closure of a permutation group in X, can be found in time
n9(m) by accessing two oracles:

@ for finding the m-closure of each primitive basic group in X,

@ for finding the relative m-closure of every group in X, with
respect to any group in X,.

A permutation group is basic if it cannot be embedded in a wreath
product in the product action.
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If X is the class of solvable groups, then X is complete.

By O'Brien—Ponomarenko—V.—Vdovin theorem, it is closed with
respect taking m-closures for m > 3.

If G € X, and m > 3, then G{™ can be found in time n©(™ in
view of Main Lemma, since

@ If G is primitive basic, then either G is m-closed and
G(M = G, or n < d for some constant d = G(™ can be
easily found.

@ Relative m-closure of every group in X, with respect to any
group in X, can be found via the Babai-Luks algorithm
because of Palfy’s theorem.
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If X is the class of solvable groups, then X is complete.

By O'Brien—Ponomarenko—V.—Vdovin theorem, it is closed with
respect taking m-closures for m > 3.

If G € X, and m > 3, then G{™ can be found in time n©(™ in
view of Main Lemma, since

@ If G is primitive basic, then either G is m-closed and
G(M = G, or n < d for some constant d = G(™ can be
easily found.

@ Relative m-closure of every group in X, with respect to any
group in X, can be found via the Babai-Luks algorithm
because of Palfy’s theorem.

What is the next step?
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Alt(d)-free groups
For d > 5, an (abstract) group is called Alt(d)-free, if it does not
contain section isomorphic to the alternating group of degree d.

Group H is a section of G if H is isomorphic to a homomorphic
image of some subgroup of G.
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the groups of order p for all primes p
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Alt(d)-free groups

For d > 5, an (abstract) group is called Alt(d)-free, if it does not
contain section isomorphic to the alternating group of degree d.

Group H is a section of G if H is isomorphic to a homomorphic
image of some subgroup of G.

The class X of Alt(d)-free groups is complete.

If d > 25, then the list of simple groups in X includes

Qo

Qo

Qo

Qo

Qo

the groups of order p for all primes p

all sporadic groups

all exceptional groups of Lie type

all classical groups of dimension less than d — 2.

all alternating groups of degree less than d.

Babai—-Cameron—Palfy (1982): If G is a primitive Alt(d)-free group,
then |G| < n€, where ¢ depends only on d.
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Main Results

Ponomarenko—Skresanov-V. (2024): Let X be a complete class
including all Alt(25)-free groups. Then the m-closure of every
permutation group from X belongs to X for each m > 4.

Corollary: If G is an Alt(d)-free group with d > 25, then G(™) is
Alt(d)-free group for m > 4.
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Main Results

Ponomarenko—Skresanov-V. (2024): Let X be a complete class
including all Alt(25)-free groups. Then the m-closure of every
permutation group from X belongs to X for each m > 4.

Corollary: If G is an Alt(d)-free group with d > 25, then G(™) is
Alt(d)-free group for m > 4.

m = 4 is the best possible, because AGL,(2)(®) = Sym(2¥).
d = 25 is the best possible (for m = 4), because 4-closure of the
Alt(9)-free Mathieu group Mayg is Sym(24).
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Inside the proof

Let H= G®. It suffices to show that H € X.
We may assume that G and H are a primitive basic group, because

Let K < Sym(l') and L < Sym(A). Then
@ KxLactson TUA = (K x L)M = KM x (M) m>1
(folklore);
@ KilLactson | |5 = (KoL) ™ =KMo 1(m m>2

e
(Kaluznin—Klin, 1976);

@ Kilactson M = (K L) < KMy [(m) m >3
(Ponomarenko-V., 2022).

In fact, KL actson 2 = (K L)(m) = Km (Il m>2,

where LI is the largest permutation group on A having the same
orbits on the set of ordered partitions into at most r parts as L, and
r = min{|Orb,(K)|, |Al} .
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Since G is primitive, Liebeck—Praeger—Sax| (1988,1992) =

Soc(G) = Soc(H) (%)
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Since G is primitive, Liebeck—Praeger—Sax| (1988,1992) =

Soc(G) = Soc(H) (%)

Since G is basic, O'Nan-Scott theorem = one of the following hold:

@ G is almost simple,
@ G is in a diagonal action,

@ G is an affine group.

If G is almost simple, we are done by ().

If G is in a diagonal action, then Soc(G) = Sk, where S is
nonabelian simple and G/S < Out S x L, where L < Sym(k).
If k <4orAlt <L, then H € X, otherwise Fawcett (2013) =
the base size number of G is 2 (i.e. Gq;,a, = 1 for some

a1, a0 € Q),s0 H=G.

Thus, G and H are affine groups with the same socle.
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G and H are affine=n=p?, G=V :Gyand H=V: Hy,
where Gp, Hy < GL(V) = GL4(p) are irreducible and primitive.

Lemma. Hy = Gé?’) N GL(V) J
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G and H are affine=n=p?, G=V :Gyand H=V: Hy,
where Gp, Hy < GL(V) = GL4(p) are irreducible and primitive.

Lemma. Hy = Gé?’) NGL(V) J

By Aschbacher classification of maximal subgroups in 'L(e, g) and

Xu—Giudici-Li-Praeger (2011): Gp and Hp belong to the same
Aschbacher class, J

it reamins to deal with the following cases:

o Gy and Hy are tensor products,
o Gy and Hp are of symplectic type,

o G and H are quasisimple.
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Tensor products

Suppose that V is a vector space over a finite field F, G = V : Gy
is a primitive affine group and F* < Gy < T'L(V). For m > 4,
@ if Gg stabilizes a tensor decomposition V = X ® Y over F,
dim X # dim Y, and the m-closures of X : (Gp)x and
Y : (Go)y belong to X, then G(™ ¢ X;
@ if Gy preserves a tensor decomposition V = ®'_; X over F,
k > 2, m: Gg — Sym(k), and the m-closures of X : (Gp)x and
7(Go) belong to X, then G(™ € %.
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Suppose that V is a vector space over a finite field F, G = V : Gy
is a primitive affine group and F* < Gy < T'L(V). For m > 4,
@ if Gg stabilizes a tensor decomposition V = X ® Y over F,
dim X # dim Y, and the m-closures of X : (Gp)x and
Y : (Go)y belong to X, then G(™ ¢ X;
@ if Gy preserves a tensor decomposition V = ®'_; X over F,
k > 2, m: Gg — Sym(k), and the m-closures of X : (Gp)x and
7(Go) belong to X, then G(™ € %.

In fact, for m-equivalent groups G and H, 7(Go)l"l = m(Ho)l"],
where LI is the largest subgroup of Sym(k) having the same orbits
as L on the set of ordered partitions into at most r parts as L, and
r = min{|Orb,((Go)x/F*)|, k} .
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Following an idea from Liebeck—Shalev (2002), we obtain

If Go and Hy are of symplectic type, then either G and H are
Alt(25)-free, or G has the base of size 3 and H = G. }
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These statements allow to complete the proof of the main result.
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Following an idea from Liebeck—Shalev (2002), we obtain

If Go and Hy are of symplectic type, then either G and H are
Alt(25)-free, or G has the base of size 3 and H = G. J

Finally, we prove

If Go and Hy are quasisimple, then either G and H are Alt(25)-free,
or Soc(Go/Z(Gp)) = Soc(Ho/Z(Hp)). J

These statements allow to complete the proof of the main result.

In particular, we have

If G is an Alt(d)-free group with d > 25, then G(™ is Alt(d)-free
group for m > 4.

Can one compute G(™ efficiently?
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Ponomarenko-V. (work in progress): For m > 4 and d > 25, the
m-closure of an Alt(d)-free group can be found in time n€, where ¢
depends on m and d.
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Ponomarenko—-V. (work in progress): For m > 4 and d > 25, the
m-closure of an Alt(d)-free group can be found in time n®, where ¢
depends on m and d.

Recall that if m,n € N, m > 3, and X is a complete class of groups
closed with respect to taking m-closures, then the m-closure of a
permutation group in X, can be found in time n®(™ by accessing
two oracles:

@ for finding the m-closure of each primitive basic group in X,

@ for finding the relative m-closure of every group in X, with
respect to any group in X,.

From our results and Babai—Cameron—Pilfy (1982): If m > 4 and
G is a primitive Alt(d)-free group with d > 25, then |G(™)| < n€,
where ¢ depends only on d.

Thus, the relative m-closure of G can be found via the Babai—Luks
algorithm in time n°, where ¢ depends on m and d.
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