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Preliminaries on projective embeddings

Γ = (P,L) point-line geometry, P the point-set and L the set of
lines.

Assumption: Γ is connected and no two lines are incident with the
same set of points (accordingly, we regard the lines of Γ as subsets
of P).
A projective embedding of Γ (also embedding for short) is an
injective mapping e from P to the point-set of a projective
geometry PG(V ) such that

e(P) spans PG(V ) and maps every line of Γ onto a line of PG(V ).

If K is the underlying division ring of the vector space V , we say
that e is defined over K.
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Covers and projections of embeddings

For i = 1, 2 let ei : Γ → PG(Vi ) be an embedding of Γ. We say
that e1 covers e2 (also e2 is a projection of e1) if e1 and e2 are
defined over the same division ring and there exists a semi-linear
mapping f : V1 → V2 such that

e2 = pg(f ) ◦ e1

where ◦ stands for composition and pg(f ) : PG(V1) → PG(V2) is
the morphism of projective geometries associated to f .
If e1 covers e2 we write e1 ≥ e2. If f is bijective then we say that
e1 and e2 are isomorphic and we write e1 ∼= e2.

Remark

The semi-linear mapping f , if it exists, is uniquely determined by
e1 and e2 up to scalars, namely the morphism pg(f ) is unique.
Accordingly, we have e1 ≥ e2 ≥ e1 if and only if e1 ∼= e2.

If e1 ≥ e2 ̸∼= e1 then we say that e1 properly covers e2.
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Absolutely and relatively universal embeddings

An embedding ẽ : Γ → PG(Ṽ ) is absolutely universal (absolute for
short) if it covers all embeddings of Γ.

Clearly, the absolute embedding, if it exists, is unique up to
isomorphisms. It is also clear that a geometry Γ admits the
absolute embedding only if all of its embeddings are defined over
the same division ring.

An embedding ê : Γ → PG(V̂ ) is relatively universal if it admits no
proper cover. Equivalently, for every projection e of ê, the
embedding ê also covers all embeddings which cover e:

(e ≤ ê) ∧ (e ≤ e ′) ⇒ e ′ ≤ ê.

If e is an embedding of Γ and ê ≥ e is relatively universal then, up
to isomorphism, ê is the unique relatively universal embedding that
covers e. We call it the universal cover of e.
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Existence of universal embeddings

Theorem (Ronan 1987)

Every embedding admits the universal cover.

Clearly, absolute embeddings are relatively universal. An absolute
embedding of Γ is indeed the universal cover of all embeddings of
Γ. So, Γ admits the absolute embedding if and only if all of its
embeddings admit the same universal cover.

Far reaching sufficient conditions for the existence of the absolute
embedding have been found by A. Kasikova and E. Shult (2001). I
am not going to recall those conditions here. I only mention that
when Γ is an embeddable parapolar space they boil down to the
following:

(*) every circuit of the collinearity graph of Γ splits in triangles
and proper quadrangles, each of the latter being contained in
a convex polar subspace (symp) of Γ other than a grid.
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In many of the parapolar spaces investigated in the literature every
circuit indeed splits in triangles and quadrangles. For these spaces
condition (∗) can be freely rephrased as follows:

the space Γ contains ‘sufficiently many’ symps which are not
grids.

Of course, this is a very vague formulation but in practise it is
always clear if enough symps other than grids exist so that to fulfill
condition (∗).
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Lie geometries

Given a building ∆ of spherical type, let J ̸= ∅ be a nonempty
subset of the set of types of ∆.
We can define a point-line geometry ∆J as follows:

points of ∆J : the J-flags of ∆;

lines: the flags of type j∼ ∪ (J \ {j}), for j ∈ J and j∼ the
adjacency of j in the Coxeter diagram of ∆;

incidence: incidence between flags as in ∆.

Geometries constructed in this way are called Lie geometries.

Example

With ∆ the building of a polar space of rank n ≥ 3, type-set
{1, 2, ..., n} and J = {2}, the points of ∆J = ∆2 are the lines of ∆
and the lines of ∆2 are the point-plane flags of ∆.

• • • . . . .. • • •
1 2 3 n − 2 n − 1 n

⃝� �
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More examples

With ∆ an n-dimensional projective geometry and J = {1, n}, the
points of ∆J = ∆{1,n} are the point-hyperplane flags of ∆ and the
lines of ∆{1,n} are the line-hyperplanes flags and the
point-subhyperplane flags of ∆.

• • • . . . .. • • •
1 2 3 n − 2 n − 1 n� � points

• • • . . . .. • • •
1 2 3 n − 2 n − 1 n� �

� �
lines

In particular, when n = 2 the points and the lines of ∆J are
respectively the chambers and the elements of ∆.

• •
1 2

�
�

�
�⃝ ⃝
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∆ of type Dn and J = {n − 1, n}.

• • . . . .. • •�����

PPPPP

•

•

1 2 n − 3 n − 2

n − 1

n
�
�

�
�points�lines

�lines

Here the points of ∆J can be identified with the sub-generators of
the polar space associated with ∆ while the lines of ∆J consist of
a generator and a sub-sub-generator contained in it.
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Lie geometries; notation

The situation most frequently considered in the literature is the
following:

∆ is associated with a split Chevalley group and |J| = 1. When ∆
is of type An or Dn the cases J = {1, n} (for ∆ of type An) and
J = {n − 1, n} (when ∆ is of type Dn) are also of interest.

In the sequel the symbols used for diagrams are as in Dynkin
notation.

Given a Dynkin diagram Xn of rank n and a field F we denote by
Xn(F) the building of (Dynkin) type Xn defined over F. Given a set
J of types of Xn(F), Xn,J(F) is the geometry ∆J with ∆ = Xn(F).
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For instance:

∆J = Bn,k(F) with J = {k} and ∆ = Bn(F) (the elements of
which are the singular subspaces of the polar space associated with
the orthogonal group O(2n + 1,F));

∆J = An,{1,n}(F) with J = {1, n} and ∆ = An(F) (the elements of
which are the proper nonempty subspaces of PG(n,F).

In particular, An,{1,n}(F), Cn,1(F), Bn,2(F), Dn,2(F), F4,1(F),
E6,2(F), E7,1(F), E8,8(F) and G2,2(F) are the so-called long-root
geometries for SL(n + 1,F), Sp(2n,F), O(2n + 1,F), O+(2n,F)
and the Chevalley groups of type F4,E6,E7,E8 and G2 respectively.

antonio pasini, Siena, Italy Projective embeddings of long-root geometries



fed

A naive belief.

All embeddable Lie geometries admit the absolute embedding,
which is the one hosted by the appropriate Weyl module, except
possibly when F is very small (e.g. |F| = 2).

FALSE! The above is true for many Lie geometries but not for all
of them.

As regards the existence of the absolute embedding, when
|Aut(F)| > 1 the long-root geometry An,{1,n}(F) is a
counterexample to the above claim. Most likely, Dn,{n−1,n}(F) with
|Aut(F)| > 1 is also a couterexample.
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Remark

Turning back to (∗) of my fifth slide, both An,{1,n}(F) (n > 2) and
Dn,{n−1,n}(F) are parapolar spaces but in each of them all symps
are grids. Regarding A2,{1,2}(F), this geometry is a non-thick
generalized hexagon; it admits no quadrangles.

Moreover, when ∆J is a long-root geometry, it can happen that
the embedding hosted by the adjoint module (which is here the
appropriate one) is not relatively universal. Hence this embedding
cannot be absolutely universal even if ∆J admits the absolute
embedding.

Remark

In view of Kasikova-Shult’s conditions, all long-root geometries but
possibly those of type An,{1,n} admit the absolute embedding.

Thus, eventually, I’ve come to the core of my talk.
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Theorem (Blok and P. , 2003)

When F is a prime field both An,{1,n}(F) (n > 2) and Dn,{n−1,n}(F)
admit the absolute embedding.

The same holds true for A2,{1,2}(F) with F a prime field (J. Thas
and H. Van Maldeghem 2000).

Let now F be arbitrary and let M0
n+1(F) be the adjoint module for

the linear group SL(n + 1,F). Namely M0
n+1(F) is the underlying

vector space of the Lie algebra sl(n + 1,F). Recall that M0
n+1(F)

consists of the traceless square matrices of order n + 1 with entries
in F and it is a hyperplane of the space Mn+1(F) of all square
matrices of order n + 1 with entries in F.
The group SL(n + 1,F) acts on it by conjugation.
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The natural embedding of An,{1,n}(F)

The geometry An,{1,n}(F) admits an embedding e in
PG(M0

n+1(F)), defined as follows.

Given a point {p,H} of An,{1,n}(F), let a ∈ V = V (n + 1,F) be a
representative vector of p and α ∈ V ∗ a linear functional
representing H. Regarded the vectors of V as rows and those of
V ∗ as columns, we can consider the matrix α · a (row-times-column
product). Note that Tr(α · a) = a · α = α(a) = 0 (because p ∈ H
by choice). The embedding e maps {p,H} onto the point of
PG(M0

n+1(F)) represented by α · a:

e({p,H}) = ⟨α · a⟩.

I call this embedding the natural embedding of An,{1,n}(F).
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If σ is a non-trivial automorphism of F, we can also consider a
twisted version of eσ of e by setting

eσ({p,H}) = ⟨α · aσ⟩.

(J. Thas and H. Van Maldeghem 2000.) The mapping eσ embeds
An,{1,n}(F) in PG(Mn+1(F)).

Lemma (P., 2024)

The embeddings e and eσ admit no common cover.

Therefore

Theorem

If |Aut(F)| > 1 then An,{1,n}(F) admits no absolute embedding.

antonio pasini, Siena, Italy Projective embeddings of long-root geometries



fed

Conjecture

The same holds true for Dn,{n−1,n}(F): if |Aut(F)| > 1 then
Dn,{n−1,n}(F) admits no absolute embedding.

Problem

What can we say when F is non-prime but admits no non-trivial
automorphism? In particular:

What about the case of F = R?
Is the existence of non-trivial endomorphisms of F enough for
An,{1,n}(F) to admit no absolute embedding?
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Next question

Is the natural embedding e : An,{1,n}(F) → PG(M0
n+1(F))

relatively universal?
Again, the answer is: it depends on F (Smith and Völkein 1989 for
n = 2, Cardinali, Guzzi and P. 2024 for the general case).
Explicitly,

Theorem

The embedding e is relatively universal if and only if F is either
perfect of positive characteristic or an algebraic extension of the
field of rational numbers.

Recall that a derivation of a field F is an additive mapping
d : F → F such that

d(xy) = d(x)y + xd(y), ∀x , y ∈ F.

The derivations of F form an F-vector space Der(F).
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Let Kder(F) be the largest subfield of F such that all derivations of
F induce the null map on it. When char(F) = 0 then Kder(F) is
the algebraic closure (in F) of the minimal subfield of F. When
char(F) = p > 0 then Kder(F) = Fp.
So, Der(F) = {0} if and only if F is either perfect of positive
characteristic or algebraic over the field of rationals.

Let Ω ⊆ F \ Kder(F) be such that every mapping ν : Ω → F
extends to a unique derivation dν of F. I call such a set a
derivation basis of F.

Remark

When char(F) = 0 the derivation bases of F are just the
transcendence bases of F over its minimum subfield. When
char(F) = p > 0 the derivation bases are the sets X ⊂ F \ Fp such
that Fp ∪ X generates F as a field and are minimal with respect to
this property.
In both cases, all derivations bases of F have the same cardinality.
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Let Ω be a derivation basis of F. Then Der(F) ∼= FΩ (the space of
F-valued mappings over Ω).

For every ω ∈ Ω, let dω be the derivation which maps ω onto 1
and all of Ω \ {ω} onto 0. Let DerΩ(F) be the subspace of Der(F)
spanned by {dω}ω∈Ω.

So, DerΩ(F) consists of the derivations which are null on all but a
finite number of elements of Ω and Der(F) ∼= (DerΩ(F))∗.

Put A := M0
n+1(F) for short and Ã := DerΩ(F)× A.

Recall that G = SL(n + 1,F) acts by conjugation on A:

a ∈ A
g−→ g−1ag ∈ A

where g ∈ G is regarded as a non singular matrix of order n + 1.
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An action of G on Ã can be defined as follows:

(d , a) ∈ Ã
g−→

(
d +

∑
ω∈Ω

Tr(g · dω(g−1) · a)dω, g−1ag

)

where for a matrix x = (xi ,j)
n+1
i ,j=1 we put dω(x) := (dω(xi ,j))

n+1
i ,j=1.

Remark

Every element t ∈ F belongs to ⟨Kder(F) ∪ Ωt⟩ for a finite subset
Ωt of Ω. So, dω(t) = 0 for all but a finite number of choices of
ω ∈ Ω. Accordingly, for every matrix x we have dω(x) = O (null
matrix) for all but a finite number of choices of ω ∈ Ω.

We define an embedding ẽ of An,{1,n}(F) in PG(Ã) as follows: if
e({p,H}) is represented by the matrix α · a ∈ A, then ẽ({p,H}) is
represented by the following element of Ã:(∑

ω∈Ω
a · dω(α) · dω, α · a

)
.
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Theorem (Cardinali, Giuzzi and P., 2024)

The embedding ẽ defined as above is the universal cover of e.

Corollary

The natural embedding e is relatively universal if and only if
Der(F) = {0}, namely if and only if F is either perfect of positive
characteristic or an algebraic extension of the field of rational
numbers.

When char(F) ̸= 2 a similar result also holds for Bn,2(F) and
Dn,2(F). I shall only discuss the Bn-case, but what I’ll say for it
can be repeated for Dn word by word.

Assume that char(F) ̸= 2 and put ∆ = Bn(F), G = O(2n + 1,F),
A is the adjoint module for G , namely the underlying G -module of
the Lie algebra o(2n + 1,F), and V = V (2n + 1,F).
Also, Ã := DerΩ(F)× A, just as in the case of An,{1,n}(F).
Likewise in the An,{1n}-case, the group G acts by conjugation on

A. Its action on Ã is defined just as in the An,{1,n}-case.
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The natural embedding e of the long-root geometry ∆2 in PG(A)
can be described as follows.

Let a, b ∈ V be such that ⟨a, b⟩ is a (singular) line of the polar
space ∆1 associated with G . Then e maps ⟨a, b⟩ onto the point of
PG(A) represented by the matrix

J · (aTb − bTa) = (aJ)Tb − (bJ)Ta

where the vectors of V are treated as rows, T stands for
transposition and

J =

 On In 0T

In On 0T

0 0 1


is the representative matrix of the symmetric bilinear form
preserved by G . (Of course, On and In are the null square matrix
and identity matrix of order n while 0 is the null vector of V .)

antonio pasini, Siena, Italy Projective embeddings of long-root geometries



fed

The universal cover ẽ of e is the absolute embedding of ∆2, since
∆2 admits the absolute embedding (Kasikova and Shult 2001).

Theorem (P., September 2024)

The embedding ẽ lives in the G-module Ã = DerΩ(F)× A and
maps the point ⟨a, b⟩ of ∆2 onto the point of PG(Ã) represented
by the following element of Ã:(∑

ω∈Ω

(
b · (dω(a)J)T − a · (dω(b)J)T

)
· dω, J(aTb − bTa)

)
.

Problem

In the above I assume char(F) ̸= 2. What can we say when
char(F) = 2?

antonio pasini, Siena, Italy Projective embeddings of long-root geometries



fed

The symplectic case

A similar game can be played with Cn,1(F) but in this case we
must switch from projective embeddings to veronesean
embeddings, where the lines of the geometry to be embedded are
mapped onto non-singular conics.
Indeed the natural embedding of Cn,1(F) in the (projective space
of the) Lie algebra sp(2n,F) is veronesean. Explicitly, it is the
composition of the natural (projective) embedding of the polar
space Cn,1(F) in PG(2n − 1,F) with the mapping from
PG(2n − 1,F) to the Veronese variety V2n−1.

Remark

Ronan’s existence proof of the universal cover of a projective
embedding can easily be rephrased for veronesean embeddings. I
don’t know if the conditions found by Kasikova and Shult for the
existence of the absolute projective embedding can be rephrased in
such a way that they also work for veronesean embeddings.
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More problems

Problem

What about the long root geometries of exceptional type?
Their natural embeddings are projective and, as proved by Völklein
(1989), when Der(F) = {0} these embeddings are relatively
universal (hence also absolutely universal, since these geometries
admit the absolute embedding). Does the converse hold too?

Problem (a vague problem)

Why oddish stuations like those I have described in the last part of
my lecture, where the natural embedding fails to be universal, only
occur with long root geometries?
Is there any peculiar property of these geometries or their natural
embeddings which can be pointed out as responsible for this?

–o0o–

Thanks for your attention
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