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Plan

The theory of finite groups is well developed and includes many in-depth
results - just mention Genesis of Finite simple groups.

Some of the theorems proved first for finite groups can be transferred to
broader classes of groups, imposing certain restrictions, weaker than the
finiteness of the number of elements.

Such constraints are called finiteness conditions.

The talk is to review some recent research on finiteness conditions: and I
will try to focus on the aspects related to finite simple groups and
Majorana and axial algebras.
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Definitions

A group G is said to be locally finite
if every finite subset of G generates a finite subgroup.

Considering subsets with just one element, note that such G is periodic
i.e. the order of any element in G must be finite.

The following definition is also used to bound element orders:
A group of period n is a group where the identity xn = 1 holds.

Example: a group of period 2 ⇒ abelian ⇒ locally finite.

Schematically these finiteness conditions are related as follows:

finite ⊂ locally finite ⊂ periodic

(strict inclusions).
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Burnside problem

An interest to these finiteness conditions is very old.

(W.Burnside to R.Fricke, 1900): Can a group, generated by a finite
number of operations, and such that the order of every one of its
operations is finite and less than an assigned integer (n), consist of an
infinite number of operations?

However, the problem is best known in the following terms:

(Burnside problem): Let n be a positive integer.
Is a group of period n locally finite?
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Is a group of period n locally finite?

In general the Burnside problem is solved negatively:

odd n ≥ 665 (P.S. Novikov, S.I. Adyan, 1978);
(so when you are 66 and 6 you already may not be locally finite
(but then you are odd) :)

even n ≥ 8000 (I.G. Lysenok, 1996).

For n = 3 (W.Burnside 1902), n = 4 (I.N. Sanov 1940) and n = 6 (M.Hall
1958) the answer is positive.

The precise bound for n separating locally finite groups is still not known.

The Burnside problem can be thought of as the heavy obstacle on the way
of generalizing finite group theory results to groups with some finiteness
conditions.
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Spectrum

Let’s discuss some of the results in finite group theory and their analogs.
In China and in Russia there is a lot of research on finite groups with a
given spectrum. So I will start here. Recall,

A spectrum of a periodic group G is the set ω(G) of its element orders.

Of course, it is sufficient and convenient to list a smaller set:
µ(G), which is the set of maximal by division elements of ω(G).

Example:, µ(A7) = {4, 5, 6, 7} (alternating group).

However, early results on groups with a given spectrum were not on finite
groups.
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On groups with a given spectrum

(Bernhard Neumann, 1937) classified groups with ω(G) = {1, 2, 3}, in
particular, proved that they are locally finite.

Some further results were as follows:

(M.Newman, 1979) ω(G) = {1, 2, 5} ⇒ G is locally finite.

(N.D.Gupta, V.D.Mazurov, 1999) ω(G) ⊂ {1, 2, 3, 4, 5} (strict subset),
then either G is locally finite, or it contains a nilpotent normal subgroup S
s.t. G/S is 5-group.

(E.Jabara, 2004) If a group P of period 5 acts freely on an abelian
2, 3-group, then |P | = 5.
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Groups whose element orders are consequitive integers

G is called Cn-group, if ω(G) = {1, 2, 3, 4, ..., n}.
Rolf Brandl and Shi Wujie in 1991 described finite Cn-groups. They proved
that n ≤ 8 and for n = 1, ..., 8 list all possibilities for G.

Classification of all (not necessarily finite) C3 and C4 groups follows from
the results of B.Neumann and I.Sanov, respectively.
(V.D.Mazurov, 2000) C5 groups are locally. finite.

In a series of work we classified all C6 and C7 groups.
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C6-groups

D.Lytkina, V.Mazurov, E.Jabara, A.M., 2014

If spectrum of G equals {1, 2, 3, 4, 5, 6}, then G is locally finite and one of
the following holds:

N = O5(G) is a nontrivial elementary abelian group, G = NC, where
C is isomorphic to SL2(3) or ⟨x, y | x3 = y4 = 1, xy = x−1⟩, and C
acts freely on N .
T = O2(G) is a nontrivial elementary abelian group and G/T is
isomorphic to A5.
G is isomorphic to S5 or S6.
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C7-groups and open questions

E.Jabara, A.M., 2021
C7-group is isomorphic to A7.

Another way to state this result is:

An alternating group A7 is recognizable by spectrum in the class of all
groups.

Two questions are still open in this direction:
Question 1: Is C8-group locally finite?
Question 2: Does there exist Cn-group with n > 8?
(It should be not locally finite.)
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Groups recognizable by spectrum

Many finite simple groups are known to be recognizable by spectrum in the
class of finite groups.
V.D.Mazurov, A.Yu.Ol’shanskii, and A.I.Sozutov (2015) showed that L2(q)
for some large q are not recognizable by spectrum in the class of all groups
(but they are recognizable in the class of finite groups).
The following groups are known to be recognizable in the class of all
groups:

(A.H.Zhurtov, V.D.Mazurov, 1999) PSL2(2
n);

(A.A.Kuznetsov, D.V.Lytkina, 2007) PSL2(7);
(D.V.Lytkina, E.Jabara, A.M., 2014) Mathieu group M10

(maximal subgroup in finite simple group M11);
(E.Jabara, A.M., 2015) PSL3(4) ≃ M11;
(E.Jabara, A.M., 2021) A7.
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Restricting some 2-generated subgroups

Studying groups with a given period or spectrum, we put finiteness
restrictions on subgroups generated by one element.
There are many remarkable results for finite groups, where the subgroups
generated by the conjugacy class C are described, based on the constraints
on the subgroups generated by two elements of C.
For example
Baer-Suzuki theorem:
the conjugacy class C in a finite group generates a nilpotent subgroup if
any two elements of C generate a nilpotent subgroup.

Which of these results about finite groups can be extended to broader
classes of groups? In other words, which of the conditions for subgroups
generated by two elements from C are good finiteness conditions, for
example, provide local finiteness of the group ⟨C⟩?
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Baer-Suzuki theorem: formulations and consequences

Statement. Let G be a finite group, x ∈ G, p be a prime.
If ∀g ∈ G a subgroup ⟨x, xg⟩ is a p-group, then ⟨xG⟩ is p-group.

The conclusion is equivalent to the fact that x falls into the p-radical
Op(G), which is the maximal normal p-subgroup of G.

For p = 2, using the properties of dihedral groups, we get the classical

Corollary. In a finite simple group an involution inverts some nontrivial
element of odd order.
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Baer-Suzuki theorem for periodic groups: negative

In 1990 A. V. Borovik put to Kourovka notebook

Question 11.11 (part):

Is the Baer-Suzuki theorem true in the class of periodic groups?

V. D. Mazurov, A. Yu. Ol’shanskii, A. I. Sozutov (2015)

There is a group of a period divisible by 248 in which any two involutions
generate a 2 group, but the 2 radical is equal to 1.

Thus (for p = 2), among groups of a sufficiently large period, Borovik’s
question has a negative answer.
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Baer-Suzuki theorem for periodic groups: positive

A. M. (2014):

Let G be a group of the period n = 4k, where k is odd, containing an
involution i. If any two elements of iG generate a 2-subgroup, then ⟨iG⟩ is a
group of period 4; in particular (by I.N.Sanov’s theorem), it is locally finite .

J. Tang, N. Yang, A.M. (2024):

Let G be a periodic group with no elements of order 32. If C ⊂ G is a
normal subset and any pair of elements from C generates a 3-group, then
⟨C⟩ is a group of period 3; in particular, it is locally finite.

Andrey Mamontov On finiteness conditions in groups



Baer-Suzuki theorem for periodic groups:summary

Question 11.11 (part):

Is the Baer-Suzuki theorem true in the class of periodic groups?

Thus, on question 11.11, a negative answer was received for p = 2 and a
big period (248);
the positive answer is
for p = 2 in groups without elements of the order of 8;
and for p = 3 in groups without elements of the order of 9:
that is, in all cases when the local finiteness of the corresponding group
⟨C⟩ will automatically follow from a known positive solution of the
Burnside problem.
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n-transposition groups

Let’s consider another example where restrictions are imposed on subgroups
generated by two elements from C, and the structure of ⟨C⟩ is studied.

G is n-transposition group, if it is generated by a normal set of
involutions (elements of order 2) D such that
∀x, y ∈ D the order |xy| ≤ n.

The most famous case is n = 3:
finite 3-transpositions groups were studied by B. Fischer, who discovered
several new sporadic groups along the way.
Finite 3-transpositions groups are classified.
Methods are called "internal geometric analysis".
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3-transposition groups

Theorem (B.Fisher, 1971)

Let (G,D) be a finite connected 3-transposition group with no solvable
subgroups ̸= 1, then G is one of the following:

Sm, m ≥ 5;
Oϵ

2m(2), ϵ = ±, m ≥ 3, (m, ϵ) ̸= (3,+);
Sp2m(2), m ≥ 3;
+Ωϵ

m(3), ϵ = ±, m ≥ 6;
SUm(2), m ≥ 4;
Fi22, Fi23, Fi24, PΩ+

8 (2) : S3, PΩ+
8 (3) : S3.

The set D is defined uniquely up to an automorphism of G.

In 1995 J.Hall and H.Cuypers improved the statement and proved that
3-transposition groups are locally finite.

Andrey Mamontov On finiteness conditions in groups



Examples for n > 3

1. The sporadic group Baby Monster is a 4-transposition group.

2. The extension of the free Burnside group B(2, 5) : 2 by an involution
inverting generatos, is a group of 5-transpositions.
It is not known whether such a group is finite.

3. The largest sporadic group (Monster) is generated by three
6−transpositions (from the conjugacy class 2A).

4. Miyamoto involutions of a Majorana algebra are 6-transpositions.
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Timmesfeld-1975

Generalizations: {3, 4}+ (Т-70,73), odd (A-72).
D is called a set of root involutions for G, if

G = ⟨D⟩, D = DG;
|xy| = 2, 4 or odd for x, y ∈ D;
if |xy| = 4 for x, y ∈ D, then (xy)2 ∈ D.

Timmesfeld’s classification, 1975)

Conditions: no normal solvable subgroups ̸= 1, G′ = G′′. Classification:
G =

∏
Gi, where Gi:

is simple in characteristic 2, different from 2F4(q);
orthogonal Oϵ

n(q), q = 2m; Oϵ
n(p), p ∈ {3, 5};

Sn or L2(q) ≀ Sn, q = 2m;
SUm(2), m ≥ 4;
A6, HJ , Fi22, Fi23, Fi24.
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Other known results for small n

1. H. Cuypers, J. I. Hall: groups of 3-transpositions are locally finite.
2. S. Khasraw, J. McInroy, S. Shpectorov: groups generated by three
4-transpositions, are finite and known.
3. The following result is on groups, generated by three 6-transpositions,
two of which commute.

V. A. Afanasev, A. M.(2024)

Let G = ⟨x, y, z⟩, where x, y, z are 6-transpositions, with |xy| = 2 and
|xz| < 6. Then G is a factor of one of the following groups: l2 : D12 or
l2 : D8, with l = 4, 5, 6; 2t : D2t, with t = 5, 6; (S4 × S4) : 2

2;
(A5 ×A5) : 2

2; PGL(2, 9); 34 : (D8 × S3); 2× (2s : S5), with s = 4, 6;
k5 : (24 : D10), with k = 2, 3; 210 : (2× PSL(2, 11)); O2 : A5 with
|O2| = 210; O3 : D20 with |O3| = 38; 2×M12; (2.M22) : 2; 2× 25 : S6 or
2× 3.S6. In particular, G is finite.
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Elements of order 3

What if we consider elements of order 3 (instead of involutions), and
restrict subgroups generated by two of them?

Let M be a set of groups. Let’s say that G is M-group, if G is generated
by a class D of conjugate elements of order 3 such that any pair of
elements from D generates a subgroup, isomorphic to a factor of some
group from M.

Example: alternating group An = ⟨(1, 2, 3)An⟩ is
M0 = {32, A4, A5}-group:

it is generated by 3-cycles, and any two various 3-cycles either
have no common elements and so commute,
or contain two common elements and generate A4,
or contain one common element and generate A5.

Andrey Mamontov On finiteness conditions in groups



Motivation in finite groups

(Old) observation: sporadic Conway group (Co0), which is an
automorphism group of 24-dim Leech lattice, is
M3 = {32, SL2(3), SL2(5)} -group.
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Results of Aschbacher and Hall

M. Aschbacher, M. Hall in 1973 published a paper describing finite
M1 = {32, SL2(3)}-groups (in our terms).

M. Aschbacher, M. Hall(1973)

Let G be a finite group, generated by a conjugacy class D of subgroups of
order 3, such that any pair of non-commuting subgroups in D generates a
subgroup isomorphic to SL2(3) or A4. Then D is isomorphic to
Spn(3), Un(3) or PGUn(2).
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Results of Stellmacher

B. Stellmacher in 1974 published a paper (in German), describing finite
M2 = {32, SL2(3), A5}-groups.

B. Stellmacher(1974)

Let G be a finite group satisfying the following conditions:
1. G is generated by a class D of elements of order 3. Two non-commuting
elements from D generate a subgroup isomorphic to A4, A5, or SL2(3).
2. There is a pair of elements in D generating A5.
3. O2(G) = Z(G) = 1.
Then G is isomorphic to Sp(2n, 2) for n ≥ 3, O+(2n, 2) or O−(2n, 2) for
n ≥ 3, An for n ≥ 5, HJ , G2(4), or Co1.

Note that series of groups from the conclusion «appear to be»
3-transposition groups (An corresponds to Sn).
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Further motivation

Note that if G is a of 3-transpositions of symplectic type, meaning
that no three 3-transposition generate 32 : 2 or 31+2 : 2,
then any pair of elements of order 3 in G, inverted by a 3-transposition
either commutes or generates a subgroup isomorphic to A4 or SL2(3) (if
4-generated diagram is the square, i.e. W (D4)), or A5 (when the diagram
can be reduced to a line).
The simple way to verify it is by using Sozutov paper of 1992 describing
rank 4 groups of symplecting type by a direct check.
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Additional example

Example: PSLn(3) is a {31+2, SL2(3)}-group. Indeed, let V be a

corresponding space and t = t1 and t2 be two transvections. By definition
this means that [V, t] is 1-dimensional and is contained in CV (t). Up to a
symmetric one of the following holds.
1. [V, t1] ⊆ CV (t2) and [V, t2] ⊆ CV (t1). Then ⟨t1, t2⟩ ≃ 32.
2. [V, t1] ̸⊆ CV (t2) and [V, t2] ̸⊆ CV (t1). Then ⟨t1, t2⟩ is contained in
SL([V, t1]⊕ [V, t2]) ≃ SL2(3).
3. [V, t1] ⊆ CV (t2) and [V, t2] ̸⊆ CV (t1). Then [t1, t2] is also a
transvection. Hence in this case ⟨t1, t2⟩ ≃ 31+2.
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Questions

Let’s write out the classes mentioned above:
M0 = {32, A4, A5}
M1 = {32, SL2(3)}
M2 = {32, SL2(3), A5}
M3 = {32, SL2(3), SL2(5)}
Me = {31+2, SL2(3)}
In this regard, it is interesting to introduce the class
M4 = {31+2, SL2(3), SL2(5)},
which contains all the classes listed above.

It is interesting to ask
Question i. Is Mi-group locally finite (i = 0, . . . , 4)?
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Known results

For i = 0 the answer is known and in some sense it is the characterization
of alternating groups.

V. Mazurov (2005)

A group G generated by a class D of conjugate elements of order 3, such
that any two non-commuting elements of D generate a subgroup
isomorphic to an alternating group of degree 4 or 5, is locally finite.
More precisely, either G contains a normal elementary abelian 2-subgroup
of index 3, or it is isomorphic to an alternating froup of some (possibly
infinite) set.

For i = 3, 4 it is also interesting to obtain the description of finite
Mi-groups.
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Let’s also mention an old result related to {3, SL2(3), SL2(5)}-groups.

A. Maximenko, A. M. (2007)

Let G be a group generated by a conjugacy class of elements of order 3,
such that any two elements from the class generated a subgroup,
isomorphic to Z3, A4, A5, SL2(3) or SL2(5). Then either G is isomorphic
to one of the groups U3(3), HJ,G2(4), 2.HJ, 2.G2(4), or G is an extension
of a locally finite 2-group by a group of order 3, or G is an extension of a
locally finite 2-group by a group isomorphic to A5. In particular, G is
locally finite.
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M4: 3-generated are classified

We started a systematic study with colleagues. A description of the
subgroups generated by three elements from D is obtained. All of them
turned out to be finite.
Depending on the configuration on the sides of the triangle (vertices are
generative, edge labels are isomorphism classes of the corresponding
2-generated subgroups), all possible 3-generated groups are described.
This description allows us to use the «Fischer’s approach» in the future: to
attach a new generator to a known configuration.
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Geometrical approach

Another well-known approach to the study of 3- transpositions is
«geometric», which is also reflected in our work. I will give an appropriate
example, where the Aschbacher-Hall reasoning is slightly modified.
Lemma Assume M1-group G contains a proper D-subgroup H ≃ U3(3).
Then any D-element not in H, commutes with some D-element from H.
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The class in U3(3)

H ≃ U3(3), there are 28 elements in xH

{x; y, xy, yx; z, xz, zx; (yzx)−1, (yz)−1, (yzx
−1
)−1;

(zyx
−1
)−1, (zyx)−1, (zy)−1; zxyx, zxy, (xyz)−1; (xzy)−1, yxzx, yxz;

(zxy
−1
)−1, xyz

−1
, (zxy

−1x)−1; (xyz
−1y)−1, (yxz

−1
)−1, xzy

−1
;

(xyzyx)−1, (xyzy)−1, yzx
−1z}

and their inverses, no two D-subgroups commute, and any three elements,
that are not in SL2(3), generate U3(3), and ∼ is not transitive.
Excluding x other 28− 1 = 27 listed D-elements of U3(3) are split in
triples, so that with x they all lie in one SL2(3)-subgroup.
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Design

Professor Da Zhao’s talk was on designs.
Consider a set of points consisting of D-subgroups, and call the block four
D-subgroups lying in a common subgroup isomorphic to SL2(3). Thus we
obtain 2− (28, 4, 1) design, or Steiner 2-design, which is finite incidence
geometry, with 28 points and 63 lines, consisting of 4 points, such that any
pair of points lies in exactly one block (or line).
G is 2-transitive on points.

Lemma If the D element is equivalent to three elements from the block,
then it is equivalent to the fourth, or commutes with it.
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Reduction of brute force

Lemma (we are proving) Assume M1-group G contains a proper
D-subgroup H ≃ U3(3). Then any D-element not in H, commutes with
some D-element from H. Fix the generators x, y, z of H ≃ U3(3)
(satisfying the corresponding defining relations) and assume the opposite.
Up to changing x to y and t to t−1 we may assume that t is equiivalent to
at least 16 of 28 elements and also t ∼ x (equivalent means that the
relation txt = xtx holds).
Then according to the helping Lemma, if t is equivalent to three elements
from the block, then it is equivalent to the fourth. Therefore, each triple
must have at least one element equivalent to t.
The properties of the 2− (28, 4, 1) design allow you to reduce the search to
exactly two cases.
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