The Terwilliger algebra of the q-Johnson graph

Xiaoye Liang (梁晓晔)

Joint work with Tatsuro Ito, Yuta Watanabe and Ying-Ying Tan

Anhui Jianzhu University

Genesis of Finite Simple Groups: 66 and 6, Shijiazhuang

December 1-5, 2024

(日) (四) (日) (日) (日)

Contents

- Definitions and Motivations
- Terwilliger's characterization of irreducible T-modules
- 3 T = S for the Johnson graph
- 4 $T \subset S$ for the q-Johnson graph

5 Further problems

æ

(日) (同) (日) (日)

Definitions and notations

Let $\Gamma = (X, R)$ be a finite, simple, undirected, connected graph.

- Distance $\partial(x, y)$: the length of a shortest path connecting x and y.
- Diameter $D := D(\Gamma) = \max\{\partial(x, y) \mid x, y \in X\}.$
- For each $0 \le i \le D$, define the *i*th distance matrix A_i by

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i. \end{cases}$$

- $\Gamma_i(x) = \{y \in X \mid \partial(x, y) = i\}$ for a vertex $x \ (0 \le i \le D)$.
- Regular with valency k: $|\Gamma_1(x)| = k$ for all vertices in Γ .

イロト イヨト イヨト イヨト

Distance-regular graph (DRG)

A connected graph Γ is called distance-regular (DR) if there are constants a_i, b_i, c_i $(0 \le i \le D = D(\Gamma))$ s.t. for any $x, y \in X$, if $\partial(x, y) = i$ then

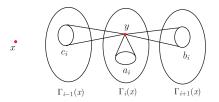
$$c_i = |\Gamma_{i-1}(x) \cap \Gamma_1(y)|,$$

$$a_i = |\Gamma_i(x) \cap \Gamma_1(y)|,$$

$$b_i = |\Gamma_{i+1}(x) \cap \Gamma_1(y)|.$$

• Intersection numbers: a_i, b_i, c_i for $0 \le i \le D$ and $b_D = c_0 = 0$.

•
$$a_i + b_i + c_i = b_0 = k$$

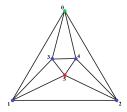


(日) (同) (日) (日)

Distance-regular graph (DRG)

A connected graph Γ is called distance-regular (DR) if there are constants a_i, b_i, c_i $(0 \le i \le D = D(\Gamma))$ s.t. for any $x, y \in X$, if $\partial(x, y) = i$ then

- $c_i = |\Gamma_{i-1}(x) \cap \Gamma_1(y)|,$ $a_i = |\Gamma_i(x) \cap \Gamma_1(y)|,$ $b_i = |\Gamma_{i+1}(x) \cap \Gamma_1(y)|.$
- Intersection numbers: a_i, b_i, c_i for $0 \le i \le D$ and $b_D = c_0 = 0$.
- $a_i + b_i + c_i = b_0 = k$.
- For example: Octahedron with $\{b_0, b_1; c_1, c_2\} = \{4, 1; 1, 4\}.$



< □ > < 同 > < 三 > < 三 >

Bose-Mesner algebra

Let Γ be a DRG. Let $A = A_1$.

- $AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}$.
- Bose-Mesner algebra $\mathfrak{A} = \langle A \rangle = \operatorname{span}\{A^0, A^1, \cdots, A^D\} = \operatorname{span}\{A_0, A_1, \cdots, A_D\}.$
- $A_i = p_i(A)$, where p_i is a polynomial of degree i.
- The ordering A_0, A_1, \cdots, A_D are called *P*-polynomial ordering.

Bose-Mesner algebra

Let Γ be a DRG. Let $A = A_1$.

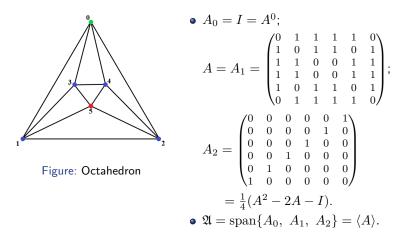
- $AA_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1}$.
- Bose-Mesner algebra $\mathfrak{A} = \langle A \rangle = \operatorname{span}\{A^0, A^1, \cdots, A^D\} = \operatorname{span}\{A_0, A_1, \cdots, A_D\}.$
- $A_i = p_i(A)$, where p_i is a polynomial of degree i.
- The ordering A_0, A_1, \cdots, A_D are called *P*-polynomial ordering.

•
$$A_i \circ A_j = \delta_{ij} A_i$$
, $\sum_{i=0}^D A_i = J$.

• Bose-Mesner algebra is closed under matrix product and Hadamard product.

< ロ > < 同 > < 三 > < 三 > 、

Example



7/43

Q-polynomial DRG

Let Γ be a DRG. Let $A = A_1$.

- Let $E_i = \prod_{j=0, j \neq i}^{D} \frac{A \theta_j I}{\theta_i \theta_j}$, where $\theta_0, \theta_1, \cdots, \theta_D$ are distinct eigenvalues of A.
- E_i is the orthogonal projection onto the eigenspace V_i corresponding to θ_i .

•
$$E_i E_j = \delta_{ij} E_i$$
 and $\sum_{i=0}^{D} E_i = I$.

• $\mathfrak{A} = \operatorname{span}\{E_0, E_1, \cdots, E_D\}.$

Q-polynomial DRG

Let Γ be a DRG. Let $A = A_1$.

- Let $E_i = \prod_{j=0, j \neq i}^{D} \frac{A \theta_j I}{\theta_i \theta_j}$, where $\theta_0, \theta_1, \cdots, \theta_D$ are distinct eigenvalues of A.
- E_i is the orthogonal projection onto the eigenspace V_i corresponding to θ_i .

•
$$E_i E_j = \delta_{ij} E_i$$
 and $\sum_{i=0}^{D} E_i = I$.

•
$$\mathfrak{A} = \operatorname{span}\{E_0, E_1, \cdots, E_D\}.$$

- $E_1 \circ E_i = \frac{1}{|X|} (b_{i-1}^* E_{i-1} + a_i^* E_i + c_{i+1}^* E_{i+1}).$
- that is equivalent to Q-polynomial property, i.e. $E_i = q_i(E_1)$ w.r.t. Hadamard product, where q_i is a polynomial of degree i.
- Dual intersection numbers: a_i^*, b_i^*, c_i^* . They are non-negative real numbers.
- The ordering E_0, E_1, \cdots, E_D are called Q-polynomial ordering.

3

イロト イヨト イヨト イヨト

Definitions and Motivations

Example

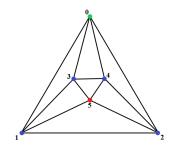
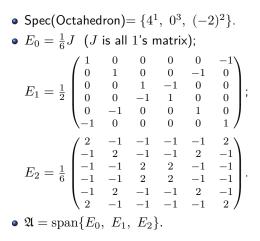


Figure: Octahedron



イロト イヨト イヨト イヨト

æ

Example: For the octahedron, Bose-Mesner algebra contains

$$M = \begin{pmatrix} 3 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -2 \\ \frac{1}{2} & 3 & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 3 & -2 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -2 & 3 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -2 & \frac{1}{2} & \frac{1}{2} & 3 & \frac{1}{2} \\ -2 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 3 \end{pmatrix}, N = \begin{pmatrix} 5 & 4 & 4 & 4 & 0 \\ 4 & 5 & 4 & 4 & 0 & 4 \\ 4 & 4 & 5 & 0 & 4 & 4 \\ 4 & 4 & 0 & 5 & 4 & 4 \\ 4 & 0 & 4 & 4 & 5 & 4 \\ 0 & 4 & 4 & 4 & 4 & 5 \end{pmatrix},$$

æ

イロト イヨト イヨト イヨト

Example: For the octahedron, Bose-Mesner algebra contains

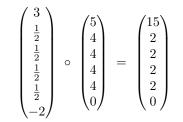
$$M = \begin{pmatrix} 3 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} \\ \frac{1}{2} & 3 & \frac{1}{2} & \frac{1}{2} & -2 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -2 & 3 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -2 & \frac{1}{2} & \frac{1}{2} & 3 & \frac{1}{2} \\ -2 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 3 \end{pmatrix}, N = \begin{pmatrix} 5 & 4 & 4 & 4 & 0 \\ 4 & 5 & 4 & 4 & 0 & 4 \\ 4 & 4 & 5 & 0 & 4 & 4 \\ 4 & 4 & 0 & 5 & 4 & 4 \\ 4 & 0 & 4 & 4 & 5 & 4 \\ 0 & 4 & 4 & 4 & 5 \end{pmatrix},$$
$$M \circ N = \begin{pmatrix} 15 & 2 & 2 & 2 & 2 & 0 \\ 2 & 15 & 2 & 2 & 0 & 2 \\ 2 & 2 & 15 & 0 & 2 & 2 \\ 2 & 2 & 0 & 15 & 2 & 2 \\ 2 & 0 & 2 & 2 & 15 & 2 \\ 0 & 2 & 2 & 2 & 2 & 15 \end{pmatrix}.$$

メロト メポト メヨト メヨト

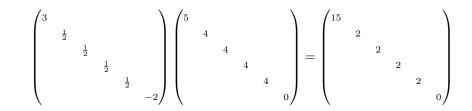
Focus on the first column:

$$M = \begin{pmatrix} 3 & & & \\ \frac{1}{2} & & & \\ \frac{1}{2} & & & \\ \frac{1}{2} & & & \\ -2 & & & \end{pmatrix}, N = \begin{pmatrix} 5 & & & \\ 4 & & \\ 4 & & \\ 4 & & \\ 0 & & \\ 0 & & & \end{pmatrix}$$
$$M \circ N = \begin{pmatrix} 15 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 0 & & & & \end{pmatrix}$$

Focus on the first column:



This is the same operation as multiplication of diagonal matrices:



So, if x_0 indexes the first column, for example, the dual Bose-Mesner algebra encodes this \circ operation.

Dual Bose-Mesner algebra

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point $x_0 \in X$.

- Define $A_i^* = A_i^*(x_0)$ with $(A_i^*)_{xx} = |X|(E_i)_{xx_0}$.
- $A_1^*A_i^* = (b_{i-1}^*A_{i-1}^* + a_i^*A_i^* + c_{i+1}^*A_{i+1}^*).$
- Dual Bose-Mesner w.r.t. x_0 : $\mathfrak{A}^* = \mathfrak{A}^*(x_0) = \operatorname{span}\{A_0^*, A_1^*, \ldots, A_D^*\}$.

Dual Bose-Mesner algebra

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point $x_0 \in X$.

- Define $A_i^* = A_i^*(x_0)$ with $(A_i^*)_{xx} = |X|(E_i)_{xx_0}$.
- $A_1^*A_i^* = (b_{i-1}^*A_{i-1}^* + a_i^*A_i^* + c_{i+1}^*A_{i+1}^*).$
- Dual Bose-Mesner w.r.t. x_0 : $\mathfrak{A}^* = \mathfrak{A}^*(x_0) = \operatorname{span}\{A_0^*, A_1^*, \ldots, A_D^*\}$.
- Define $E_i^* = E_i^*(x_0)$ with $(E_i^*)_{xx} = 1$ if $x \in \Gamma_i(x_0)$, 0 otherwise, where $\Gamma_i(x_0) = \{x \in X \mid \partial(x, x_0) = i\}$.

•
$$E_i^* E_j^* = \delta_{ij} E_i^*$$
 and $\sum_{i=0}^{D} E_i^* = I$.

•
$$\mathfrak{A}^* = \operatorname{span}\{E_0^*, E_1^*, \dots, E_D^*\}.$$

< ロ > < 同 > < 三 > < 三 > 、

Terwilliger algebra (or subconstituent algebra)

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point x_0 .

T = T(x₀) = ⟨𝔄,𝔄*⟩ ⊂ Mat_X(ℂ) is the Terwilliger algebra w.r.t. x₀ over ℂ.
T = ⟨A, E_i* | 0 ≤ i ≤ D⟩.

イロト イ団ト イヨト イヨト

Terwilliger algebra (or subconstituent algebra)

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point x_0 .

- $T = T(x_0) = \langle \mathfrak{A}, \mathfrak{A}^* \rangle \subset \operatorname{Mat}_X(\mathbb{C})$ is the Terwilliger algebra w.r.t. x_0 over \mathbb{C} .
- $T = \langle A, E_i^* \mid 0 \le i \le D \rangle.$
- \bullet T is a semi-simple algebra.
- $V = \mathbb{C}^X \simeq \bigoplus_{x \in \mathcal{X}} \mathbb{C}x$: the standard module for T.
- T-submodule $W \subset V$ s.t. $TW \subseteq W$.
- T-submodule W is irreducible $\Longleftrightarrow W \neq 0, \ W$ does not properly contain a nonzero T-submodule.
- $\bullet~V$ is an orthogonal direct sum of irreducible $T\mbox{-submodules}.$
- V is a faithful T-module. In particular, every irreducible T-module appears in V.

イロト イ団ト イヨト イヨト

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point x_0 . Let $T = T(x_0)$ be the Terwilliger algebra of Γ . Let $V = \mathbb{C}^X$.

- $H = \operatorname{Aut}(\Gamma)_{x_0}$, the stabilizer of $\operatorname{Aut}(\Gamma)$ w.r.t. x_0 .
- Centralizer algebra of H $S = \operatorname{Hom}_{H}(V, V) = \{f : V \to V \mid f(hv) = hf(v) \text{ for all } h \in H, v \in V\}.$
- T is a combinatorial analog of S.
- $\bullet\,$ In general, $T\subseteq S$.
- Remark: $S = \operatorname{Hom}_H(V, V) \simeq \operatorname{Mat}_X(\mathbb{C})$ is a coherent algebra, i.e., closed under the matrix product and the Hadamard product, whereas T may not be closed under the Hadamard product.

э

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point x_0 . Let $T = T(x_0)$ be the Terwilliger algebra of Γ . Let $V = \mathbb{C}^X$.

- $H = \operatorname{Aut}(\Gamma)_{x_0}$, the stabilizer of $\operatorname{Aut}(\Gamma)$ w.r.t. x_0 .
- Centralizer algebra of H $S = \operatorname{Hom}_{H}(V, V) = \{f : V \to V \mid f(hv) = hf(v) \text{ for all } h \in H, v \in V\}.$
- T is a combinatorial analog of S.
- $\bullet\,$ In general, $T\subseteq S$.
- Remark: $S = \operatorname{Hom}_H(V, V) \simeq \operatorname{Mat}_X(\mathbb{C})$ is a coherent algebra, i.e., closed under the matrix product and the Hadamard product, whereas T may not be closed under the Hadamard product.
- List of *Q*-polynomail DRGs: Hamming graphs, Johnson graphs, *q*-Johnson graphs, dual polar graphs, bilinear form graphs, classical form graphs, exceptions.
- Question 1: Which graphs in the list satisfy T = S?

イロト 不得 トイヨト イヨト

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point x_0 . Let $T = T(x_0)$ be the Terwilliger algebra of Γ . Let $V = \mathbb{C}^X$.

- $H = \operatorname{Aut}(\Gamma)_{x_0}$, the stabilizer of $\operatorname{Aut}(\Gamma)$ w.r.t. x_0 .
- Centralizer algebra of H $S = \operatorname{Hom}_{H}(V, V) = \{f : V \to V \mid f(hv) = hf(v) \text{ for all } h \in H, v \in V\}.$
- T is a combinatorial analog of S.
- $\bullet\,$ In general, $T\subseteq S$.
- Remark: $S = \operatorname{Hom}_H(V, V) \simeq \operatorname{Mat}_X(\mathbb{C})$ is a coherent algebra, i.e., closed under the matrix product and the Hadamard product, whereas T may not be closed under the Hadamard product.
- List of *Q*-polynomail DRGs: Hamming graphs, Johnson graphs, *q*-Johnson graphs, dual polar graphs, bilinear form graphs, classical form graphs, exceptions.
- Question 1: Which graphs in the list satisfy T = S?
- Question 2: If $T \subset S$ holds, how large is the gap between S and T?

・ロト ・四ト ・ヨト ・ヨト

э.

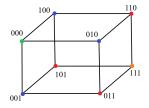
Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Fix a base point x_0 . Let $T = T(x_0)$ be the Terwilliger algebra of Γ . Let $V = \mathbb{C}^X$.

- $H = \operatorname{Aut}(\Gamma)_{x_0}$, the stabilizer of $\operatorname{Aut}(\Gamma)$ w.r.t. x_0 .
- Centralizer algebra of H $S = \operatorname{Hom}_{H}(V, V) = \{f : V \to V \mid f(hv) = hf(v) \text{ for all } h \in H, v \in V\}.$
- T is a combinatorial analog of S.
- $\bullet\,$ In general, $T\subseteq S$.
- Remark: $S = \operatorname{Hom}_H(V, V) \simeq \operatorname{Mat}_X(\mathbb{C})$ is a coherent algebra, i.e., closed under the matrix product and the Hadamard product, whereas T may not be closed under the Hadamard product.
- List of *Q*-polynomail DRGs: Hamming graphs, Johnson graphs, *q*-Johnson graphs, dual polar graphs, bilinear form graphs, classical form graphs, exceptions.
- Question 1: Which graphs in the list satisfy T = S?

• Question 2: If $T \subset S$ holds, how large is the gap between S and T? $T \circ T = S$?

Related Results Hamming graph

- Let $q \ge 2$, $D \ge 1$ be integers.
- $\Omega = \{0, 1, 2, \dots, q-1\}.$
- Hamming graph H(D,q) has vertex set $X = \Omega^D$.
- $x \sim y$ if they differ in exactly one position.
- H(D,2) is D-cube.
- An undelying space for coding theory.
- T = S holds^a.



イロト イボト イヨト イヨト

^aD. Gijswijt, A. Schrijver, and H. Tanaka. "New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming". In: *J. Combin. Theory Ser. A* 113.8 (2006), pp. 1719–1731.

Related Results Johnson graph

- Let $1 \le D \le N$ be integers.
- $\Omega = \{1, 2, \dots, N\}.$
- Johnson graph J(N, D) has vertex set $X = \begin{pmatrix} \Omega \\ D \end{pmatrix}$.
- $x \sim y$ if $|x \cap y| = D 1$.
- $J(N,D) \simeq J(N,N-D).$
- Usually, assume $N \ge 2D$. Diameter = D.
- An undelying space for design theory.

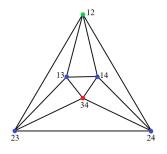
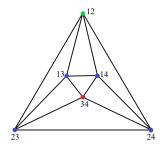


Figure: J(4,2)

¹Y-Y. Tan et al. "The Terwilliger algebra of the Johnson scheme J(N, D) revisited from the viewpoint of group representations". In: European J. Combin. 80 (2019), pp. 157–171. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Box \rangle \rightarrow \langle \Box \rangle$

Related Results Johnson graph

- Let $1 \le D \le N$ be integers.
- $\Omega = \{1, 2, \dots, N\}.$
- Johnson graph J(N, D) has vertex set $X = \begin{pmatrix} \Omega \\ D \end{pmatrix}$.
- $x \sim y$ if $|x \cap y| = D 1$.
- $J(N,D) \simeq J(N,N-D).$
- Usually, assume $N \ge 2D$. Diameter = D.
- An undelying space for design theory.



- T = S holds when $N \neq 2D$;
- $T \subset S$ holds when $N = 2D.^1$

¹Y-Y. Tan et al. "The Terwilliger algebra of the Johnson scheme J(N, D) revisited from the viewpoint of group representations". In: European J. Combin. 80 (2019), pp. 157–171. $\Box \mapsto \langle \Box \rangle = \langle \Box$

Related Results *q*-Johnson graph

- Let q be a prime power and \mathbb{F}_q be a finite field.
- $1 \le D \le N$ be integers.
- $\Omega = \mathbb{F}_q^N$.
- q-Johnson graph $J_q(N,D)$ has vertex set $X = {\Omega \choose D}_q$.
- $x \sim y$ if $\dim(x \cap y) = D 1$.
- $J_q(N,D) \simeq J_q(N,N-D).$
- Usually, assume $N \ge 2D$. Diameter = D.
- $J_q(N,D)$ is a q-analog of J(N,D).

イロト イ団ト イヨト イヨト

Related Results *q*-Johnson graph

- Let q be a prime power and \mathbb{F}_q be a finite field.
- $1 \le D \le N$ be integers.
- $\Omega = \mathbb{F}_q^N$.
- q-Johnson graph $J_q(N,D)$ has vertex set $X = {\Omega \choose D}_q$.
- $x \sim y$ if $\dim(x \cap y) = D 1$.
- $J_q(N,D) \simeq J_q(N,N-D).$
- Usually, assume $N \ge 2D$. Diameter = D.
- $J_q(N,D)$ is a q-analog of J(N,D).
- $\bullet \ T \subset S \text{ holds}.$

イロト イ団ト イヨト イヨト

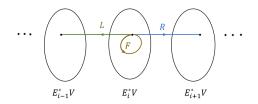
Decomposition of A

Let $\Gamma = (X, R)$ be a Q-polynomial DRG. Let $V = \mathbb{C}^X$.

- $T = T(x_0) = \langle A, E_i^* \mid 0 \le i \le D \rangle$: the Terwilliger algebra w.r.t x_0 .
- Lowering map $L = L(x_0) = \sum_{i=1}^D E_{i-1}^* A E_i^*$ and $L E_i^* V \subseteq E_{i-1}^* V$;

• Flat map
$$F = F(x_0) = \sum_{i=0}^{D} E_i^* A E_i^*$$
 and $F E_i^* V \subseteq E_i^* V$;

- Raising map $R = R(x_0) = \sum_{i=0}^{D-1} E_{i+1}^* A E_i^*$ and $R E_i^* V \subseteq E_{i+1}^* V$.
- A = L + F + R.



< ロ > < 同 > < 回 > < 回 >

Parameters of an irreducible T-module

Let W be an irreducible T-submodule of V for Γ .

- endpoint of W: $\nu := \min\{i \mid 0 \le i \le D, E_i^* W \ne 0\}.$
- dual-endpoint of W: $\mu := \min\{i \mid 0 \le i \le D, E_i W \ne 0\}.$
- diameter of W: $d = \#\{i \mid E_i^* W \neq 0\} 1 = \#\{i \mid E_i W \neq 0\} 1.$
- W is thin $\Leftrightarrow \dim E_i^* W \leq 1 \Leftrightarrow \dim E_i W \leq 1$ for all i.

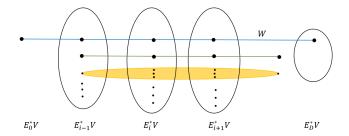
Terwilliger, 1993

For the known Q-polynomial DRG, **thin** irreducible *T*-modules are determined by parameters (ν, μ, d, e) , where *e* is a auxiliary parameter.^{*a*}

^aP. Terwilliger. "The subconstituent algebra of an association scheme III". In: *J. Algebraic Combin.* 2 (1993), pp. 177–210.

< ロ > < 同 > < 回 > < 回 >

Parameters of an irreducible T-module



æ

イロト イヨト イヨト イヨト

2/43

Irreducible T-modules for the Johnson graph²

Let $\Gamma = J(N, D)$. Let W be an irreducible T-module with $d \ge 1$. • W is thin.

• W is determined by (ν,μ,d) (up to isomorphism) that satisfy

$$(\Delta_1) \begin{cases} 0 \le \frac{D-d}{2} \le \nu \le \mu \le D - d \le D \\ d \in \{D - 2\nu, \min\{D - \mu, N - D - 2\nu\}\} \end{cases}$$

Irreducible T-modules for the q-Johnson graph³

Let $\Gamma = J_q(N, D)$. Let W be an irreducible T-module with $d \ge 1$.

- \bullet W is thin.
- $\bullet~W$ is determined by (ν,μ,d,e) (up to isomorphism) that satisfy

$$(\Delta_2) \begin{cases} 0 \le \frac{D-d}{2} \le \nu \le \mu \le D - d \le D \\ e + d + D \text{ is even, } |e| \le 2\nu - D + d \\ d \in \{e + D - 2\nu, \min\{D - \mu, e + D - 2\nu + 2(N - 2D)\}\} \end{cases}$$

Remark

- No proof is given in Terwilliger's paper, 1993.
- It is not clear whether all (ν, μ, d) in (Δ_1) for Johnson graph (all (ν, μ, d, e) in (Δ_2) for q-Johnson graph) appear from irreducible T-modules with $d \ge 1$.

Our work

We showed that all (ν, μ, d) with (Δ_1) for Johnson graph^a (all (ν, μ, d, e) with (Δ_2) for q-Johnson graph^b) appear from irreducible T-modules, including d = 0!

^aY-Y. Tan et al. "The Terwilliger algebra of the Johnson scheme J(N, D) revisited from the viewpoint of group representations". In: European J. Combin. 80 (2019), pp. 157–171.

^bX. Liang, T. Ito, and Y.Watanabe. "The Terwilliger algebra of the Grassmann scheme $J_q(N, D)$ revisited from the viewpoint of the quantum affine algebra $U_q(\hat{\mathfrak{sl}}_2)$ ". In: Linear Algebra Appl. 596 (2020), pp. 117–144.

New parameters of an irreducible T-module for J(N, D)

Let Λ_1 be the set of ordered pairs (α,β) of non-negative integers $\alpha,\ \beta$ such that

$$(\Lambda_1) \begin{cases} 0 \le \alpha \le \frac{D}{2}, \\ 0 \le \beta \le \min\{D, \frac{N-D}{2}\}, \\ 0 \le \alpha + \beta \le D. \end{cases}$$

Define a mapping $\varphi_1: \Lambda_1 \to \Delta_1, (\alpha,\beta) \longmapsto (\nu,\mu,d)$ by

$$\nu = \max(\alpha, \beta),$$

$$\mu = \alpha + \beta,$$

$$d = \begin{cases} D - 2\alpha & \text{if } \beta - \alpha \leq 0, \\ D - \alpha - \beta & \text{if } 0 \leq \beta - \alpha \leq N - 2D, \\ N - D - 2\beta & \text{if } N - 2D \leq \beta - \alpha. \end{cases}$$

イロト 不得 トイヨト イヨト

New parameters of an irreducible T-module for J(N, D)

Theorem (Liang, T.Ito, Y-Y.Tan, 2017)

- (1) The mapping $\varphi_1 : \Lambda_1 \to \Delta_1$ is a bijection if $N \neq 2D$.
- (2) Let $\bar{\Lambda}_1$ be the subset of Λ_1 consisting of $(\alpha, \beta) \in \Lambda_1$ that satisfy $\beta \alpha \leq 0$. Then the mapping $\varphi|_{\bar{\Lambda}_1} : \bar{\Lambda}_1 \to \Delta_1$ is a bijection if N = 2D.

(日) (同) (日) (日)

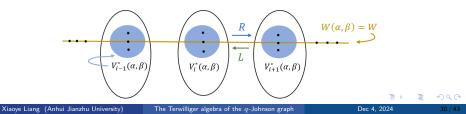
Let $\Gamma = J(N, D)$.

- Let $\Omega = \Omega_1 \cup \Omega_2$, where $|\Omega_1| = D$, $|\Omega_2| = N D$.
- $H = \operatorname{Sym}(\Omega_1) \times \operatorname{Sym}(\Omega_2).$
- $\operatorname{Sym}(\Omega_1)$ acts on $\binom{\Omega_1}{D-i}$, $\operatorname{Sym}(\Omega_2)$ acts on $\binom{\Omega_2}{i}$.
- Let $\pi_i^{(1)}$ be the permutation character of $\operatorname{Sym}(\Omega_1)$ on $\binom{\Omega_1}{D-i} \simeq \binom{\Omega_1}{i}$;
- Let $\pi_i^{(2)}$ be the permutation character of $\operatorname{Sym}(\Omega_2)$ on $\binom{\Omega_2}{i}$.
- $\pi_i^{(1)} = \sum_{\alpha=0}^i \chi_{\alpha}^{(1)}$, where $\chi_{\alpha}^{(1)}$ is an irreducible character of $\text{Sym}(\Omega_1)$.
- $\pi_i^{(2)} = \sum_{\beta=0}^i \chi_{\beta}^{(2)}$, where $\chi_{\beta}^{(2)}$ is an irreducible character of $Sym(\Omega_2)$.
- $\chi_{\alpha}^{(1)}\chi_{\beta}^{(2)}$: irreducible character of H, where $0 \le \alpha \le \min\{i, D-i\}, \ 0 \le \beta \le \min\{i, N-D-i\}.$

 $V = \mathbb{C}^X.$

- $V_i^* = E_i^* V$ is a permutation H-module. H is multiplicity free on V_i^* .
- V_i^{*} = ⊕_{α,β} V_i^{*}(α,β), where V_i^{*}(α,β) be the irreducible *H*-submodule with character χ_α⁽¹⁾ χ_β⁽²⁾.
 V = ⊕_i V_i^{*} = ⊕_i ⊕_i ⊕_i ⊕_i V_i^{*}(α,β) = ⊕_{α,β} ⊕_i V_i^{*}(α,β).
 V^{*}(α,β) = ⊕_i V_i^{*}(α,β): the sum of irreducible *H*-submodules of *V* that afford the irreducible character χ_α⁽¹⁾ χ_β⁽²⁾ of *H*, i.e., the homogeneous component of *V* that belongs to the isomorphism class (α, β) ∈ Λ.
 V = ⊕_{α,β} V^{*}(α,β).

- $S = \operatorname{Hom}_{H}(V, V).$
 - $V^*(\alpha,\beta)$ is invariant under S.
 - Let $W \subseteq V$ be an irreducible S-submodule, then $\exists ! (\alpha, \beta) \in \Lambda_1$ s.t. $W \subseteq V^*(\alpha, \beta)$.
 - Let $W,W'\subseteq V^*(\alpha,\beta)$ be any irreducible S-submodules. Then $W\simeq W'$ as an S-submodule.
 - This means that irreducible S-submodules W of V are parameterized by $(\alpha,\beta)\in\Lambda_1,$ up to isomorphism.
 - Let $W(\alpha,\beta)$ be an irreducible S-module.
 - $R, L, F \in S$.



 $\mathsf{Case}\ N \neq 2D$

- Irreducible T-submodules W of V with $d\geq 1$ are parameterized by $(\alpha,\beta)\in\Lambda_1,$ up to isomorphism.
- For $W, W' \subseteq V$ with $d = d' \ge 1$,

 $W \simeq W'$ as S-modules $\Leftrightarrow W \simeq W'$ as T-modules.

- In the case of d = 0, isomorphism classes of W is parameterized by (ν, μ) .
- And $(\alpha, \beta) \rightarrow (\nu, \mu)$ is 1:1.
- T = S.

 $\mathsf{Case}\ N=2D$

•
$$(\alpha, \beta) \rightarrow (\nu, \mu, d)$$
 is 2:1.

• $T \subset S$.

< □ > < 同 > < 三 > < 三 >

New parameters of an irreducible T-module for $J_q(N, D)$

Let Λ_2 be the set of ordered pairs (α,β,ρ) of non-negative integers α,β,ρ such that

$$(\Lambda_2) \begin{cases} 0 \le \alpha \le \frac{D-\rho}{2}, \\ 0 \le \beta \le \frac{N-D-\rho}{2}, \\ 0 \le \alpha + \beta \le D - \rho. \end{cases}$$

Define a mapping $\varphi_2: \Lambda_2 \to \Delta_2, (\alpha, \beta, \rho) \longmapsto (\nu, \mu, d, e)$ by

$\nu = \rho + \max\{\alpha, \beta\},$
$\mu = \rho + \alpha + \beta,$

$$d = \begin{cases} D - \rho - 2\alpha & \text{if } \beta - \alpha \leq 0, \\ D - \rho - \alpha - \beta & \text{if } 0 \leq \beta - \alpha \leq N - 2D, \\ N - D - \rho - 2\beta & \text{if } N - 2D \leq \beta - \alpha. \end{cases}$$
$$e = \begin{cases} \rho & \text{if } \beta - \alpha \leq 0, \\ \rho + \alpha - \beta & \text{if } 0 \leq \beta - \alpha \leq N - 2D, \\ \rho - N + 2D & \text{if } N - 2D \leq \beta - \alpha. \end{cases}$$

New parameters of an irreducible T-module for $J_q(N, D)$

Theorem (Liang, T.Ito, Y. Watanabe, 2020)

- (1) The mapping $\varphi_2 : \Lambda_2 \to \Delta_2$ is a bijection if $N \neq 2D$.
- (2) Let $\bar{\Lambda}_2$ be the subset of Λ_2 consisting of $(\alpha, \beta, \rho) \in \Lambda_2$ that satisfy $\beta \alpha \leq 0$. Then the mapping $\varphi|_{\bar{\Lambda}_2} : \bar{\Lambda}_2 \to \Delta_2$ is a bijection if N = 2D.

< ロ > < 同 > < 回 > < 回 >

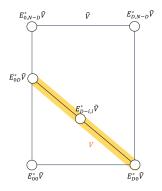
The meaning of Λ_2 from the viewpoint of quantum affine algebras

Let $\Gamma = J_q(N, D)$.

• Let
$$\Omega = \mathbb{F}_q^N = \Omega_1 \oplus \Omega_2$$
,
where $\Omega_1 = \mathbb{F}_q^D$, $\Omega_2 = \mathbb{F}_q^{N-D}$.
• $\widetilde{X} = \bigcup_{k=0}^N {\binom{\Omega}{k}}_q$: the set of all subspaces of Ω .
• Fix $x_0 = \Omega_1 \in {\binom{\Omega}{D}}_q$.
• For $0 \le i \le D, 0 \le j \le N - D$, let
 $\widetilde{X}_{ij} = \{x \in \widetilde{X} \mid \dim(x \cap x_0) = i, \dim x = i + j\}$.
• Define $E_{ij}^* = E_{ij}^*(x_0)$ by

$$(E_{ij}^*)_{xx} = 1$$
 if $x \in \widetilde{X}_{ij}$, 0 otherwise.

- $\widetilde{V} = \mathbb{C}^{\widetilde{X}} = \bigoplus_{i,j} E_{i,j}^* \widetilde{V}.$ $V = \mathbb{C}^X = \bigoplus_i E_{D-i,i}^* \widetilde{V} \subset \widetilde{V}.$

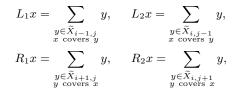


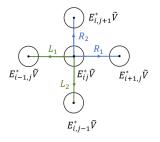
< ロ > < 同 > < 回 > < 回 >

The meaning of Λ_2 from the viewpoint of quantum affine algebras

Let $\Gamma = J_q(N, D)$.

• Define $L_1, L_2, R_1, R_2 \in \operatorname{Hom}(\widetilde{V}, \widetilde{V})$ by





where for
$$x, y \in \widetilde{X}$$
, x covers y iff $x \supset y$ and $\dim x = \dim y + 1$.

• $\mathcal{H} = \langle L_1, L_2, R_1, R_2, E_{ij}^* \mid \forall i, j \rangle \subseteq \operatorname{Mat}_{\widetilde{X}}(\mathbb{C}).$

The meaning of Λ_2 from the viewpoint of quantum affine algebras

Theorem (Y. Watanabe, 2017)

There is an algebra homomorphism from the quantum affine algebra $U_{\sqrt{q}}(\widehat{\mathfrak{sl}}_2)$ to algebra \mathcal{H} , and \mathcal{H} is generated by its image together with the center.^a

^aY. Watanabe. "An algebra associated with a subspace lattice over a finite field and its relation to the quantum affine algebra $U_q(\widehat{sl}_2)$ ". In: J. Alg. 489 (2017), pp. 475–505.

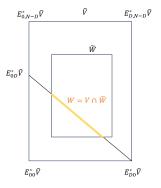
Theorem (Y. Watanabe 2017, X. Liang -T. Ito -Y. Watanabe 2020)

Irreducible \mathcal{H} -submodules \widetilde{W} of \widetilde{V} with are parameterized by $(\alpha, \beta, \rho) \in \widetilde{\Lambda}_2$, up to isomorphism, where $\widetilde{\Lambda}_2 = \{(\alpha, \beta, \rho) \mid 0 \le \alpha \le \frac{D-\rho}{2}, 0 \le \beta \le \frac{N-D-\rho}{2}\}$

< ロ > < 同 > < 回 > < 回 >

The meaning of Λ_2 from the viewpoint of quantum affine algebras

- Recall $\Lambda_2 = \{(\alpha, \beta, \rho) \in \widetilde{\Lambda}_2 \mid 0 \le \alpha + \beta \le D \rho\}.$
- If $\widetilde{W} \subseteq \widetilde{V}$ is an irreducible \mathcal{H} -module of type $\lambda = (\alpha, \beta, \rho) \in \Lambda_2$, then $W = \widetilde{W} \cap V$ is an irreducible T-module of type $\varphi_2(\lambda) \in \Delta_2$;
- If $\varphi_2(\lambda) = (\nu, \mu, 0, e) \in \Delta_2$, then $W = \widetilde{W} \cap V$ has diameter 0 and type (ν, μ) .
- Conversely, if $W \subseteq V$ is an irreducible T-module with $d \ge 1$, then $\widetilde{W} = \mathcal{H}W \subseteq \widetilde{V}$ is an irreducible \mathcal{H} -module when $N \ne 2D$.



• • • • • • • • • • • • • •

Let $\Gamma = J_q(N, D)$. • Let $\Omega = \mathbb{F}_q^N = \Omega_1 \oplus \Omega_2$, where $\Omega_1 = \mathbb{F}_q^D$, $\Omega_2 = \mathbb{F}_q^{N-D}$. • Let G = GL(N,q). G acts on $\binom{\Omega}{k}_q$ as automorphisms. • Remark: If $N \neq 2D$, $\operatorname{Aut}(\Gamma) = \operatorname{Gal}(\mathbb{F}_q)PGL(N,q) = P\Gamma L(N,q)$; If N = 2D, $\operatorname{Aut}(\Gamma) = P\Gamma L(N,q)$. • Choose $x_0 = \Omega_1 \in \binom{\Omega}{D}_q$ • $H = G_{x_0} = (GL(D,q) \times GL(N-D,q)) \ltimes \operatorname{Mat}_{D \times (N-D)}(q)$.

Dunkl-Watanabe's dulity (X. Liang, T. Ito, in preparation)

 $\operatorname{Hom}_{H}(\widetilde{V},\widetilde{V})=\mathcal{H}.$

- Irreducible H-modules of \widetilde{V} are parameterized by (α, β, ρ) in $\widetilde{\Lambda}_2$.
- Irreducible H-modules of V are parameterized by (α, β, ρ) in Λ_2 .

・ロト ・四ト ・ヨト ・ヨト

э.

Let
$$\Gamma = J_q(N, D)$$
.
• $V_i^* = E_{D-i,i}^* V$: *H*-submodule of *V*.
• $V_i^* = \bigoplus_{(\alpha,\beta,\rho)\in\Lambda_2}^* V_i^*(\alpha,\beta,\rho)$, where $V_i^*(\alpha,\beta,\rho)$: irreducible *H*-submodule.

$$V = \bigoplus_{0 \le i \le D} V_i^* = \bigoplus_{0 \le i \le D} \bigoplus_{(\alpha, \beta, \rho) \in \Lambda_2} V_i^*(\alpha, \beta, \rho)$$
$$= \bigoplus_{(\alpha, \beta, \rho) \in \Lambda_2} \bigoplus_{0 \le i \le D} V_i^*(\alpha, \beta, \rho).$$

• Let $V^*(\alpha, \beta, \rho) = \bigoplus_i V_i^*(\alpha, \beta, \rho).$

$$V = \bigoplus_{(\alpha,\beta,\rho) \in \Lambda_2} V^*(\alpha,\beta,\rho)$$

the homogeneous component decomposition of \boldsymbol{V} as a H-module.

• = the homogeneous component decomposition of V as an S-module.

Let $\Gamma = J_q(N, D)$.

- Let $W \subseteq V$ be an irreducible S-submodule, then $\exists ! (\alpha, \beta, \rho) \in \Lambda_2$ s.t. $W \subseteq V^*(\alpha, \beta, \rho)$.
- Let $W,W'\subseteq V^*(\alpha,\beta,\rho)$ be any irreducible S-modules. Then $W\simeq W'$ as S-module.
- This means that irreducible S-submodules W of V are parameterized by $(\alpha,\beta,\rho)\in\Lambda_2,$ up to isomorphism.

イロト イヨト イヨト イヨト

Case $N \neq 2D$.

• Irreducible T-submodules W of V with $d\geq 1$ are parameterized by $(\alpha,\beta,\rho)\in\Lambda_2,$ up to isomorphism.

• For
$$W, W' \subseteq V$$
 with $d = d' \ge 1$,

 $W \simeq W'$ as S-modules $\Leftrightarrow W \simeq W'$ as T-modules.

- In the case of d = 0, isomorphism classes of W is parameterized by (ν, μ) .
- But $(\alpha, \beta, \rho) \rightarrow (\nu, \mu)$ is not 1:1, because the parameter e is dropped.
- $T \subset S$.

Case N = 2D.

•
$$(\alpha, \beta, \rho) \rightarrow (\nu, \mu, d, e)$$
 is 2:1.

• $T \subset S$.

メロト メポト メヨト メヨト

Further problems

- For Johnson graphs, $T \circ T = S$ when N = 2D?
- For q-Johnson graphs, $T \circ T = S$?
- \bullet What are the relations between T and S for dual polar graphs, bilinear form graphs, \ldots

(日) (同) (日) (日)

Thank you!

æ

イロト イヨト イヨト イヨト