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Notations

Definition
Graph: I = (V, E) with vertex set V and edge set E C (3).

@ All graphs in the talk are undirected and simple (no loops or
multiple edges).

@ The adjacency matrix A of I is the matrix whose rows and
columns are indexed by its vertices, such that Ay, = 1 if xy
is an edge and 0 otherwise.

@ The eigenvalues of ' are the eigenvalues of its adjacency
matrix.

@ d(x,y):the distance between x and y.

@ D(I'): diameter of I', if I' is connected.

o Ii(xX)={yldxy)=i},T(x)=T1(x) ={y | x ~ y}.

@ The subgraph induced on I'(x) is the local graph of I' at x,
denoted by A(x).
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Distance-regular graphs (DRG)

A connected graph I is called distance-regular (DRG) if there
are numbers a;, b;, ¢;, 0 < i < D(I'), such that for any two verti-

ces x and y with d(x,y) = |,

IF1(y)NFi (X)) = ¢, IT1(y)NFi(x)| = a;, [T1(y)NTip1(x)] = b;.

aj, bj, ¢j, 0 < i < D(T') are called the intersection numbers of I'.

« @

Di—1(x) Ti(z) Tit1(2)
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Distance-regular graphs (DRG)

I is regular with valency by = |I'1(x)| for any x € V(I'), and

b():C,'—|—a,'+b,'.
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Distance-regular graphs (DRG)

I is regular with valency by = |I'1(x)| for any x € V(I'), and

bo:C,'—|—a,'+b,'.

For a DRG I with diameter D, its intersection array is

L(r) = {bo,b1,...,bD,1;C1,Cg,...,CD}.
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We say that a distance-regular graph I of diameter D has classi-
cal parameters (D, b, «, 3) if the intersection numbers of I' satisfy

o= [, (e[ "
o= (O, ()Gl e

where mb:1ererer---b”1 forj > 1 and mbzo.
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We say that a distance-regular graph I of diameter D has classi-
cal parameters (D, b, «, 3) if the intersection numbers of I' satisfy

o= [, (e[ "

o= (1], = [1,) (e ==l): @

whereH =1+b+b?+ b’1forj>1ande:O.
We note that b # 0, —1 by the following result.

Let T be a distance-regular graph with classical parameters
(D, b, o, B) and the diameter D > 3. Then, b is an integer such

thatb # 0, —1.
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There are many examples of DRG with classical parameters na-
mely:

@ Hamming graphs and Doob graphs,

@ Johnson graphs,

@ Grassmann graphs and twisted Grassmann graphs,

@ bilinear forms graphs,

@ sesquilinear forms graphs,

@ quadratic forms graphs,

@ dual polar graphs,

@ the Ustimenko graphs,

@ the Hemmeter graphs.
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@ Bannai’s problem is to classify Q-polynomial distance-regular
graph with large diameter.

@ For diameter 3 there are too many examples.

@ An important subproblem of Bannai’s problem is to classify
the DRG with classical parameters, as they are Q-polynomial.

@ This is a very hard problem as the twisted Grassmann gra-
phs do exist.

@ All the known infinite families of DRG with valency at least
three and with unbounded diameter have classical parame-
ters or are very closely related to an infinite family of DRG
with classical parameters, like the folded hypercubes and
the doubled Grassmann graphs.
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@ If bis negative then they are essentially classified by C.-W.
Weng. There is still one infinite family of feasible parameter
sets, for which we do not have any idea whether they exist

or not.
@ Terwilliger in the 1980’s classified the DRG with classical

parameters with b = 1.
@ He obtained:

LetT be a DRG with classical parameters (D, b, «, 3) where b =
1 and D > 4. Then I' is a Hamming graph, a halved cube, a

Johnson graph or a Doob graph.
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The Grassmann graphs

Theorem (Metsch(1995))

The Grassmann graphs Jq(n, D) (n > 2D) are characterized by
their intersection array if n > max{2D+2,2D+6—q} and D > 3.
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The Grassmann graphs

Theorem (Metsch(1995))

The Grassmann graphs Jq(n, D) (n > 2D) are characterized by
their intersection array if n > max{2D+2,2D+6—q} and D > 3.

@ What happens forn=2D,n=2D +1?

@ Van Dam and K. (2005) found the twisted Grassmann gra-
phs. They have the same parameters as Jq(2D + 1, D), so
the Grassmann graph Jy(2D+1, D) is not determined by its
intersection array.
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@ Gavrilyuk and K. (2024+): The Grassman graphs Jy(2D, D)
are uniquely determined if D > 12 orifg>9and D > 7.

@ K., Lv and Gauvrilyuk (in progress): The Grassmann graphs
J2(2D + 3, D) are uniquely determined if D > 3.

@ The method is a slight improvement of the method Metsch
used.

@ Gavrilyuk (in progress): The Grassmann graphs J>(2D +
2, D) are uniquely determined if D > 3 and D odd.

@ He uses the vanishing Krein parameters to obtain some ex-
tra conditions on the c,-graph.
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Bilinear forms graphs

Metsch, building on earlier work of Sprague, Ray-Chaudhuri,
Huang and Cuypers, showed:

Theorem (Metsch (1999))

The bilinear forms graph Bil(D x e, q) is characterized by its in-
tersection arrayifg=2ande>D+4org>3ande> D + 3.
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Bilinear forms graphs

Metsch, building on earlier work of Sprague, Ray-Chaudhuri,
Huang and Cuypers, showed:

Theorem (Metsch (1999))

The bilinear forms graph Bil(D x e, q) is characterized by its in-
tersection arrayifg=2ande>D+4org>3ande> D + 3.

Gavrilyuk and K. (2018): The bilinear forms graph Bil(D x e, q)
is characterized by its intersection array if g =2 and e = D.
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forms graph. Then 3 is bounded by b?P+4(a 4 1)2.
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The following is a simplification of a result of Metsch.

K. Metsch, 1999

Let I be a DRG with classical parameters (D, b, «, 3) such that
D > 3, b > 2 and it is not a Grassmann graph, or a bilinear
forms graph. Then 3 is bounded by b?P+4(a 4 1)2.

Moreover, we have the following:

If o € {b— 1, b}, then 8 < bP+5,

Can we improve the bound for 37

We think the upper bound for 3 should be something like Cb”
where C is a constant only depending on « and b and not on D.
Can we obtain a bound of « in terms of b? We are going to talk
about this in this talk.
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@ Let I be a DRG with classical parameters (D, b, «, 3) such
that D > 3,b> 1.

@ Then ¢; = (14 «)(1 + b) and hence a(b+ 1) is an integer.

@ By looking at the integrability of c;3 and ¢, we easily obtain
a>0.

@ By looking at the integrability of p3, we obtain o < 5b8, if
D > 4.

@ All the known infinte unbounded diameter families of DRG
with classical parameters have o < b + v/b.

@ We wonder whether this is the right bound.

@ lfa=0,8#0,b>2, D> 4and locally the disjoint union
of cliques, the graph must be a dual polar graph.

@ This result is based on work by Brouwer and Wilbrink, De
Bruyn, Cameron, Cohen and others.
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Our first result is:

LetT be a DRG with classical parameters (D, b, o, 3) such that
D>12,andb>2. Thena < b?(b+1).
Moreover, if b= 2, then a < 2.

For b = 2, this shows that we have only 7 choices for a. Several
of them can be removed by looking at the integrability of p2’ for
some /. This is still work in progress with H. Ge, C. Lv, and Q.
Yang.
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With C. Lv, we are working on bounding the parameter g in terms
of D, b and .
On this moment we can show the following.

LetT be a DRG with classical parameters (D, b, o, 3) such that
D > 9, and b > 2. Then there exists a constant C = C(«, b)
such that 3 < CbP.

C is something like b°.
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Partial linear spaces

@ An incidence structure is a tuple (P, L,Z) where P and L
are non-empty disjoint sets and Z C P x L. The elements
of P and L are called points and lines, respectively.

e If (p,¢) € T we say that p is incident with ¢, or that p is on
the line ¢. The order of a point is the number of lines it is
incident with and similarly for lines.

@ The point-line incidence matrix of (P, L,Z) is the |P| x |L|-
matrix such that the (p,¢) is 1 if p is incident with ¢ and 0
otherwise.
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each pair of distinct points are both incident with at most
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@ A partial linear space is an incidence structure such that
each pair of distinct points are both incident with at most
one line.

@ Let X = (P,L,Z) be a partial linear space. For a point p,
define 7(p) := the number of lines through p.

@ We define 7(X) for a partial linear space X = (P, L,Z), as
7(X) = max{7(x) | x € P}.
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@ A partial linear space is an incidence structure such that
each pair of distinct points are both incident with at most
one line.

@ Let X = (P,L,Z) be a partial linear space. For a point p,
define 7(p) := the number of lines through p.

@ We define 7(X) for a partial linear space X = (P, L,Z), as
7(X) = max{7(x) | x € P}.

@ The point graph I of an incidence structure (P, £,Z) is the
graph with vertex set P and two distinct points are adjacent
if they are on a common line. Note that lines are cliques in
r.
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A result of Metsch

Metsch gave a sufficient condition for a DRG to be the point
graph of a partial linear space.

Theorem

Let T be a DRG. Assume that there exists a positive integer s
such that the following two conditions are satisfied:

o (s+N)(ar+1)—k> (- 13"
@ a +1>(cx—1)(2s—-1).
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A result of Metsch

Metsch gave a sufficient condition for a DRG to be the point
graph of a partial linear space.

Theorem

Let T be a DRG. Assume that there exists a positive integer s
such that the following two conditions are satisfied:

o (s+1)(a +1)— k> (= 1)(%3");

@ a+1>(cc—1)2s—1).
Define a line as a maximal clique with at least a; + 2 — (¢, —
1)(s—1) vertices. Then X = (V(I'), L, €) is a partial linear space,
where L is the set of all lines, and T is the point graph of X.
Moreover, every vertex is in at most s lines.
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@ For a DRG with classical parameters (D, b, i, 3) with b > 2
and D > 3, the result of Metsch means that if 5 > bP+5,
then the graph is the point graph of partial linear space with
large lines with s < 3bP.
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@ For a DRG with classical parameters (D, b, i, 3) with b > 2
and D > 3, the result of Metsch means that if 3 > bP+5,
then the graph is the point graph of partial linear space with
large lines with s < 3bP.

@ Although a twisted Grassmann graph is the point graph of a
partial linear space, its lines are not the maximum cliques.
The twisted Grassmann graphs have 3 > bP.
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Geometric DRG

We first need the Delsarte bound for cliques for a DRG with
classical parameters.

Let T be a distance-regular graph with classical parameters
(D, b,a, ) with D > 3 and b > 2. Then the order c of a clique
C inT is bounded by c < g + 1. If equality holds, the number of
neighbours in C of a vertex notin C is 1+ « or 0.
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Geometric DRG

We first need the Delsarte bound for cliques for a DRG with
classical parameters.

Let T be a distance-regular graph with classical parameters
(D, b,a, ) with D > 3 and b > 2. Then the order c of a clique
C inT is bounded by c < g + 1. If equality holds, the number of
neighbours in C of a vertex notin C is 1+ « or 0.

@ A clique with equality in the lemma is called a Delsarte cli-
que.

@ A DRG T is called geometric if it is the point graph of a
partial linear space with Delsarte cliques as its lines. This
is equivalent that we can partition the edge set of I into
Delsarte cliques.
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Using the method of Metsch, he used in his bilinear forms graph
paper in 1999, with some modifications and simplifications, we
were able to show:

LetT be a DRG with classical parameters (D, b, o, ) such that
D>9 and b > 2.
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Using the method of Metsch, he used in his bilinear forms graph
paper in 1999, with some modifications and simplifications, we
were able to show:

LetT be a DRG with classical parameters (D, b, o, ) such that
D > 9, and b > 2. Then there exists a constant C; = Cy(«, b)
such that if 3 > C1bP, then T is geometric. In particular 0 < a <
b is an integer.
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Using the method of Metsch, he used in his bilinear forms graph
paper in 1999, with some modifications and simplifications, we
were able to show:

LetT be a DRG with classical parameters (D, b, o, ) such that
D > 9, and b > 2. Then there exists a constant C; = Cy(«, b)
such that if 3 > C1bP, then T is geometric. In particular 0 < a <
b is an integer.

The C; is something like b® and the twisted Grassmann graphs
are not geometric.
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@ With some extra work we were able to show that 5 < C;bP.
@ Thank you for your attention.
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