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Notations

Definition

Graph: Γ = (V ,E) with vertex set V and edge set E ⊆
(V

2

)
.

All graphs in the talk are undirected and simple (no loops or
multiple edges).

The adjacency matrix A of Γ is the matrix whose rows and
columns are indexed by its vertices, such that Axy = 1 if xy
is an edge and 0 otherwise.
The eigenvalues of Γ are the eigenvalues of its adjacency
matrix.
d(x , y):the distance between x and y .
D(Γ): diameter of Γ, if Γ is connected.
Γi(x)= {y | d(x , y) = i}, Γ(x) = Γ1(x) = {y | x ∼ y}.
The subgraph induced on Γ(x) is the local graph of Γ at x ,
denoted by ∆(x).
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Distance-regular graphs (DRG)

A connected graph Γ is called distance-regular (DRG) if there
are numbers ai ,bi , ci , 0 ≤ i ≤ D(Γ), such that for any two verti-
ces x and y with d(x , y) = i ,

|Γ1(y)∩Γi−1(x)| = ci , |Γ1(y)∩Γi(x)| = ai , |Γ1(y)∩Γi+1(x)| = bi .

ai , bi , ci , 0 ≤ i ≤ D(Γ) are called the intersection numbers of Γ.
Petersen graph

x
...

Γi−1(x)

ci

Γi(x)

y

ai
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Distance-regular graphs (DRG)

Γ is regular with valency b0 = |Γ1(x)| for any x ∈ V (Γ), and

b0 = ci + ai + bi .

For a DRG Γ with diameter D, its intersection array is

ι(Γ) := {b0,b1, . . . ,bD−1; c1, c2, . . . , cD}.
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We say that a distance-regular graph Γ of diameter D has classi-
cal parameters (D,b, α, β) if the intersection numbers of Γ satisfy

ci =
[

i

1

]
b

(
1 + α

[
i−1

1

]
b

)
, (1)

bi =
([

D

1

]
b
−
[

i

1

]
b

)(
β − α

[
i

1

]
b

)
, (2)

where
[

j

1

]
b

= 1 + b + b2 + · · · bj−1 for j ≥ 1 and
[

0

1

]
b

= 0.

We note that b 6= 0,−1 by the following result.

Lemma
Let Γ be a distance-regular graph with classical parameters
(D,b, α, β) and the diameter D ≥ 3. Then, b is an integer such
that b 6= 0,−1.
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There are many examples of DRG with classical parameters na-
mely:

Hamming graphs and Doob graphs,
Johnson graphs,
Grassmann graphs and twisted Grassmann graphs,
bilinear forms graphs,
sesquilinear forms graphs,
quadratic forms graphs,
dual polar graphs,
the Ustimenko graphs,
the Hemmeter graphs.
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Bannai’s problem is to classify Q-polynomial distance-regular
graph with large diameter.

For diameter 3 there are too many examples.
An important subproblem of Bannai’s problem is to classify
the DRG with classical parameters, as they are Q-polynomial.
This is a very hard problem as the twisted Grassmann gra-
phs do exist.
All the known infinite families of DRG with valency at least
three and with unbounded diameter have classical parame-
ters or are very closely related to an infinite family of DRG
with classical parameters, like the folded hypercubes and
the doubled Grassmann graphs.
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If b is negative then they are essentially classified by C.-W.
Weng. There is still one infinite family of feasible parameter
sets, for which we do not have any idea whether they exist
or not.

Terwilliger in the 1980’s classified the DRG with classical
parameters with b = 1.
He obtained:

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) where b =
1 and D ≥ 4. Then Γ is a Hamming graph, a halved cube, a
Johnson graph or a Doob graph.
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The Grassmann graphs

Theorem (Metsch(1995))

The Grassmann graphs Jq(n,D) (n ≥ 2D) are characterized by
their intersection array if n ≥ max{2D+2,2D+6−q} and D ≥ 3.

What happens for n = 2D,n = 2D + 1?
Van Dam and K. (2005) found the twisted Grassmann gra-
phs. They have the same parameters as Jq(2D + 1,D), so
the Grassmann graph Jq(2D +1,D) is not determined by its
intersection array.
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Gavrilyuk and K. (2024+): The Grassman graphs Jq(2D,D)
are uniquely determined if D > 12 or if q ≥ 9 and D > 7.

K., Lv and Gavrilyuk (in progress): The Grassmann graphs
J2(2D + 3,D) are uniquely determined if D ≥ 3.
The method is a slight improvement of the method Metsch
used.
Gavrilyuk (in progress): The Grassmann graphs J2(2D +
2,D) are uniquely determined if D ≥ 3 and D odd.
He uses the vanishing Krein parameters to obtain some ex-
tra conditions on the c2-graph.
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Bilinear forms graphs

Metsch, building on earlier work of Sprague, Ray-Chaudhuri,
Huang and Cuypers, showed:

Theorem (Metsch (1999))

The bilinear forms graph Bil(D × e,q) is characterized by its in-
tersection array if q = 2 and e ≥ D + 4 or q ≥ 3 and e ≥ D + 3.

Gavrilyuk and K. (2018): The bilinear forms graph Bil(D × e,q)
is characterized by its intersection array if q = 2 and e = D.
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The following is a simplification of a result of Metsch.

K. Metsch, 1999
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 3, b ≥ 2 and it is not a Grassmann graph, or a bilinear
forms graph. Then β is bounded by b2D+4(α + 1)2.
Moreover, we have the following:
If α ∈ {b − 1,b}, then β ≤ bD+5.

Remark
Can we improve the bound for β?
We think the upper bound for β should be something like CbD

where C is a constant only depending on α and b and not on D.
Can we obtain a bound of α in terms of b? We are going to talk
about this in this talk.
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Let Γ be a DRG with classical parameters (D,b, α, β) such
that D ≥ 3, b ≥ 1.
Then c2 = (1 + α)(1 + b) and hence α(b + 1) is an integer.

By looking at the integrability of c3 and c2 we easily obtain
α ≥ 0.
By looking at the integrability of p4

22 we obtain α ≤ 5b8, if
D ≥ 4.
All the known infinte unbounded diameter families of DRG
with classical parameters have α ≤ b +

√
b.

We wonder whether this is the right bound.
If α = 0, β 6= 0, b ≥ 2, D ≥ 4 and locally the disjoint union
of cliques, the graph must be a dual polar graph.
This result is based on work by Brouwer and Wilbrink, De
Bruyn, Cameron, Cohen and others.
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All the known infinte unbounded diameter families of DRG
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Our first result is:

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 12, and b ≥ 2. Then α ≤ b2(b + 1).

Moreover, if b = 2, then α ≤ 2.

For b = 2, this shows that we have only 7 choices for α. Several
of them can be removed by looking at the integrability of p2i

ii for
some i . This is still work in progress with H. Ge, C. Lv, and Q.
Yang.
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With C. Lv, we are working on bounding the parameter β in terms
of D,b and α.

On this moment we can show the following.

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 9, and b ≥ 2. Then there exists a constant C = C(α,b)
such that β ≤ CbD.

C is something like b5.
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Partial linear spaces

An incidence structure is a tuple (P,L, I) where P and L
are non-empty disjoint sets and I ⊆ P × L. The elements
of P and L are called points and lines, respectively.

If (p, `) ∈ I we say that p is incident with `, or that p is on
the line `. The order of a point is the number of lines it is
incident with and similarly for lines.
The point-line incidence matrix of (P,L, I) is the |P| × |L|-
matrix such that the (p, `) is 1 if p is incident with ` and 0
otherwise.
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A partial linear space is an incidence structure such that
each pair of distinct points are both incident with at most
one line.

Let X = (P,L, I) be a partial linear space. For a point p,
define τ(p) := the number of lines through p.
We define τ(X ) for a partial linear space X = (P,L, I), as
τ(X ) = max{τ(x) | x ∈ P}.
The point graph Γ of an incidence structure (P,L, I) is the
graph with vertex set P and two distinct points are adjacent
if they are on a common line. Note that lines are cliques in
Γ.
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A result of Metsch

Metsch gave a sufficient condition for a DRG to be the point
graph of a partial linear space.

Theorem

Let Γ be a DRG. Assume that there exists a positive integer s
such that the following two conditions are satisfied:

(s + 1)(a1 + 1)− k > (c2 − 1)
(s+1

2

)
;

a1 + 1 > (c2 − 1)(2s − 1).
Define a line as a maximal clique with at least a1 + 2 − (c2 −
1)(s−1) vertices. Then X = (V (Γ),L,∈) is a partial linear space,
where L is the set of all lines, and Γ is the point graph of X .
Moreover, every vertex is in at most s lines.
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For a DRG with classical parameters (D,b, α, β) with b ≥ 2
and D ≥ 3, the result of Metsch means that if β > bD+5,
then the graph is the point graph of partial linear space with
large lines with s ≤ 3

2bD.

Although a twisted Grassmann graph is the point graph of a
partial linear space, its lines are not the maximum cliques.
The twisted Grassmann graphs have β > bD.
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Geometric DRG

We first need the Delsarte bound for cliques for a DRG with
classical parameters.

Lemma
Let Γ be a distance-regular graph with classical parameters
(D,b, α, β) with D ≥ 3 and b ≥ 2. Then the order c of a clique
C in Γ is bounded by c ≤ β + 1. If equality holds, the number of
neighbours in C of a vertex not in C is 1 + α or 0.

A clique with equality in the lemma is called a Delsarte cli-
que.
A DRG Γ is called geometric if it is the point graph of a
partial linear space with Delsarte cliques as its lines. This
is equivalent that we can partition the edge set of Γ into
Delsarte cliques.



Distance-regular graphs DRG with classical parameters Bounds on α and β

Geometric DRG

We first need the Delsarte bound for cliques for a DRG with
classical parameters.

Lemma
Let Γ be a distance-regular graph with classical parameters
(D,b, α, β) with D ≥ 3 and b ≥ 2. Then the order c of a clique
C in Γ is bounded by c ≤ β + 1. If equality holds, the number of
neighbours in C of a vertex not in C is 1 + α or 0.

A clique with equality in the lemma is called a Delsarte cli-
que.
A DRG Γ is called geometric if it is the point graph of a
partial linear space with Delsarte cliques as its lines. This
is equivalent that we can partition the edge set of Γ into
Delsarte cliques.



Distance-regular graphs DRG with classical parameters Bounds on α and β

Geometric DRG

We first need the Delsarte bound for cliques for a DRG with
classical parameters.

Lemma
Let Γ be a distance-regular graph with classical parameters
(D,b, α, β) with D ≥ 3 and b ≥ 2. Then the order c of a clique
C in Γ is bounded by c ≤ β + 1. If equality holds, the number of
neighbours in C of a vertex not in C is 1 + α or 0.

A clique with equality in the lemma is called a Delsarte cli-
que.

A DRG Γ is called geometric if it is the point graph of a
partial linear space with Delsarte cliques as its lines. This
is equivalent that we can partition the edge set of Γ into
Delsarte cliques.



Distance-regular graphs DRG with classical parameters Bounds on α and β

Geometric DRG

We first need the Delsarte bound for cliques for a DRG with
classical parameters.

Lemma
Let Γ be a distance-regular graph with classical parameters
(D,b, α, β) with D ≥ 3 and b ≥ 2. Then the order c of a clique
C in Γ is bounded by c ≤ β + 1. If equality holds, the number of
neighbours in C of a vertex not in C is 1 + α or 0.

A clique with equality in the lemma is called a Delsarte cli-
que.
A DRG Γ is called geometric if it is the point graph of a
partial linear space with Delsarte cliques as its lines. This
is equivalent that we can partition the edge set of Γ into
Delsarte cliques.



Distance-regular graphs DRG with classical parameters Bounds on α and β

Using the method of Metsch, he used in his bilinear forms graph
paper in 1999, with some modifications and simplifications, we
were able to show:

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 9, and b ≥ 2.

Then there exists a constant C1 = C1(α,b)
such that if β ≥ C1bD, then Γ is geometric. In particular 0 ≤ α ≤
b is an integer.

The C1 is something like b6 and the twisted Grassmann graphs
are not geometric.
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With some extra work we were able to show that β ≤ C1bD.
Thank you for your attention.
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