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1. Introduction




Introduction

* Forany x = (x1,+, %), ¥y = (y1,+*, ¥n) € L7, the Lee distance -

[ ] [ ]
0Nl (1,1

(£1-norm, Manhatten distance...) between them is d; (x,y) =

?=1 |xi -y il- 20) * ool @0 | 20

* Lee sphere of radius r centered at O is:

S, 1) = (g, x0) € T Ty la| <73
Polyomino L(2,2)
__ wmin{nr} 4; (M (T associated with S(2,2)
S| = 2i—p " 2 (l) (l) '
* A perfect Lee code C & A tiling of Z" by translates of S(n, 1) %
7" = Ueec(S(,1r)+¢)=Sn,r) @ C \_L I
. . N1 s Aom 1 11" |
* Itis equivalent to "‘tile” R" by L(n,7) = S(n,r) + [— E’E] I
1 11"
R" =ge Z" + [_E'E] =ge. L(n,T) B C

Polyomino L(3,2)



-
o)
.Lu
o
-
o
=)
=
-
e

2 and

)

=1

= Theorem (Golomb, Welch 1968/1970) Perfect Lee codes exist for n

any r; and for r = 1 and any n.

= Golomb-Welch conjecture (1968): there are no more perfect Lee codes for

1121345167

5161718191100 11j12) 01 ]2)3]|4[5]6]7]8]9

Of1]2]3]4]5]|6]7]8[9]10J11j12[f0]1[2]3]4
8190111210 1]12]314]|5]6]7[8]9]10]11}12

314]15]6]7]8[9]10J11]12]0

L1210 L1213 4567 [8[9]10ft1{12]0]1]2

617819 |10f11{12]0) 12345678910

L1231 45[6)7|8]9[10J11{12]0|1[2])3|4]|5
910y11j12f0 11234516789 ]|10J11]12]0

A15(678[910j11j12f0]1]12]3|4]5]6]7]8

1210112345167 [8]9|10j11{1210]1(2]3

718191011120 11234 ]|5]6]|7[8]9]10]11

213145167 (819]10)L1{121 0L |2]|3]4]5]6
LOfT1{121 0 1123141516789 |10)11{12[{0]1

other choices of n and r.

2,7 = 2, the green points form a perfect code (lattice)

n =

Solomon Golomb (1932-2016)



Introduction

* GW conjecture: A Perfect Lee codes for n = 3 and
r=2.

partially proved for given n and r > N(n).

Basic Idea by GW

* Conscribed cross-polytope X(n,r) of L(n, 1),

(2r+ "

Vol(X (n, r))

Vol(L(n r)) me{n 73t (7;) (n) ~ 21 (:l), r — oo.

l

* The packing density of X(n, r) must be smaller than
(0.87)™, n large enough. (Toth, Fodor, Vigh, 2015)

..................................




Introduction

= GW conjecture was partially proved for given n and r > N(n).

= Many works to find small N (7). (Combinatorial, Geometric and Functional Analysis)

= Post(1975), Astola, Lepisto (1980’s), Horak, Kim (2018), etc.

= Best results up to now:

N(n) < V2vn + ¢ if nislarge enough and c is a small constant

= Survey: Horak, Kim, 50 years of the Golomb-Welch conjecture, 2018.

* Lee codes in Zj;, and weak GW-conjecture

= Association scheme (Sole 1990’s), weak-metric=multivariate polynomial, Lloyd Theorem...

* linear programming method, SDP method (Astola, Polak, 2015-2019).




The "hugging” number
of Lee spheres




The hugging number of Lee spheres

= The kissing number is the greatest number of non-overlapping unit spheres
that can be arranged such that they each touch a common unit sphere.

= If there exists a tiling or a very dense packing of Lee spheres, there should be
a large hugging number which is the greatest number of facets of S(n, )

that can be covered by non-overlapping translations of S(n, ).



The hugging number of Lee spheres

Proposition (Z. 2024+). There are asymptotically perfect "hugging” of S(n,r) by its

translation, for fixed r and n — .

Proof (sketch). When n is large enough, we only have to care about

elements of weight r in S(n, r) in the shape of

r
|

| 1 T
(i]-; il,'",il,o,(),"'). S F

*  Number of facets of S(n,r): 2" (Trl) 2n—r)+0(@n") |

* A translation S(n,7) + (1,1,++,1,0,0, ---) can cover (27”:- 1) amn 17‘ | .

facets 2r+1

* By Liu, Shangguan 2024+, there exists a constant (2r + 1)-weight code € in F3 of minimum
(1-o(0))2" (.}
(2r+1)
r+1
2r +1 (1-0(1)2"** (.} n n
( " ) (4 1) 820 0) g o qy)pren (M- =27 (1) @n-r) +0@"), n - w

(r+1)

distance 2r + 1 with #C >




The hugging number of Lee spheres

= Recall that the packing density of cross-polytopes must be << (0.87)", n large

enough.

= Geometric approach: GW conjecture was partially proved for given n and r >
N(n).

* Question: How about the cases with fixed r and large n?

* Our "hugging number” results show that it could be locally very dense and
the geometric intuition does not always work.

= Next we show the packing density of S(n,r) with n — o is > some constant.



R
The density of (lattice) packings

- §7(S(n, 1)), 6,(S(n, 7)) : the supremum of the upper density of

translative/lattice packings of translates of S(n,r).

= If 67 (S (n, r)) < 1forn = 3 and r = 2, then GW-conjecture is

proved; the converse seems not true.

= If 6, (S (n, r)) < 1forn = 3 and r = 2, then the lattice version of

GW-conjecture is proved; the converse is true.



Lower bounds for the lattice
packing density &, (S(n, 7))




A typical algebraic packing theorem.

Theorem 1. Let G be a finite abelian group, R = {a4, a,, -, a,} S G. Assume that
R generates G. Define a homomorphism ¢:Z" — G by ¢(e;) = a;, where e; =
(0, ...,0,1,0, ...). Then the following statements are equivalent:

a) The restriction of ¢ on S(n, ) is injective.
b) The set ker(¢) defines a lattice packing of S(n,r).

IS(n,r)|
|G

The density of the lattice packing is




Lower bounds

homomorphism ¢: Z" = G such

Theorem 1 *(Horak, AlBdaiwi 2012) 3 a lattice tiling of Z™ by Lee spheres of
radius r < there are an abelian group G of order |S(n,7)| and a

that ¢|g, ) is a bijection.

S DN
S
ﬁ
N

0 0|1(2[3]4]|5|6]7
5 8| 9(10[11[12/ 0] 12
[ 0 3l4|{5(6[7]|8]|9]10
8 1112[0[1|2]3]4]5
3 6[7]|8]9[10[11[12] 0
1 112|3]4|5|6]7]8
6 9l10{11{12[0] 1|23
1 415(6|7(8]|9]10[11

0l1121314[5]6

G = (213r+)/ (p(el) =1 7 §0(82) =5



Theorem 1. Let G be a finite abelian group, R = {a4, a,, -, a,} S G. Assume that
R generates G. Define homomorphism ¢:Z" — G by ¢(e;) = a;. Then the
following statements are equivalent:

a) The restriction of ¢ on S(n, ) is injective.

b) The set ker(¢) defines a lattice packing of S(n,r).

IS(n,r)|
|G

Goal: Find a finite (additive) abelian group G, and R € G such that

The density of the lattice packing is

(1) R generates G;

(2) For any u,v € Z™ with ||lull, l[v|l; £ 7, if Yu;a; = Yv;a;, then u = v.




A related problem in Graph Theory

Degree/diameter problems

* Moore bound for general graphs: #V < 1+ d Y- (d — 1)".

* Moore-like bound for abelian Cayley graphs:

in{k,d} ~i (k\ (d
6] < ymin z()()

l l

= Moore-like bound = |S(n,r)| withn =d,r = k.

= Abelian Cayley graph meeting the Moore-like bound < Lattice tiling of S(n, )




Theorem 2. For any r > 1, choose F, such that char(F,) >r + 1. Let G =
Corp1 X Fp, and R = {(1,x,x2, ---,x"’): X € IFZ}- Then R satisfies (1) and (2) with
n=q-—1.

(I) R generates G;

(2) For any u,v € Z™ with ||lull, l[v|l1 £ 7, if Yu;a; = Yv;a;, then u = v.

Density:

sl 27
Qr+1))(n+1)" Qr+0r!
»In fact, R is a Sidon set of order r: the sum ),;_,; b;., 1 <i; <--<i.<q-—1
J=1"1;

are all distinct. One can always use this trick to construct a lattice packing of
Lee spheres. (Kovacevic 2022)

— OO




For r = 2, the density of the previous construction tends to 2/5.

A better construction for r = 2:

Theorem 3. (Xiao, Z. 2024) Let q be an odd prime power g = 2 (mod 3). Define
R ={(1,x,x?):x € F;} € C; x Fz. Then R satisfies (1) and (2) withn = q — 1.

2n?+2n+1 R 2 20
3(n+1)2 3’ )

x+y+z=0
x2+y2+2z2=0
= Similar construction can be done for g even.

The packing density is

= Extra work to show { has no solutions in [FZ-

= Related to planar functions in finite geometry.




Upper bounds for the lattice
packing density &, (S(n, 7))




Upper bounds

Recall that the geometric method can only handle fixed n and r > N(n).
For fixed r, Algebraic and Combinatorics Methods:

= Symmetric polynomials over finite fields (Kim 2017, Zhang, Ge 2017, Qureshi 2020)

= Fast algorithm for small n;
= Works for infinitely many n?

= Usually, [S(n, )| needs to be prime or to have large prime divisors.

= Convert the original problem into a group ring equation

= Group characters (=eigenvalue of the associated graph), algebraic number theory, finite
fields...(Zhang, Z. 2019)

= Usually need small prime divisors of [S(n, r)|.

= Handle the group ring equations directly mod 3, mod 5... (Leung, Z. 2020)

= Currently only works for r = 2.




Upper bounds

Group Ring Equations approach

A lattice tiling of Lee spheres of radius 2 in Z" < The existence of T € G, where G is an
abelian (multiplicative) group of order 2n? + 2n + 1, such that T = TC"1, the identity

e €T and [Zhang, Z. 2019] Apply x € G, obtain
T2 =26 —T® + 2ne € Z[G equations in algebraic integer rings.

where T®) = ¥, t°. [Leung, Z. 2020] Analyze T3 = T® mod 3,T° = T®mod 5
* Theorem (Leung, Z. 2020) For n = 3 and r = 2, lattice tiling of Z" b
S(n,2) does not exist, i.e. §,(S(n, 7)) < 1. Symmetric polynomial approach

to exclude small n
* Theorem (with Xu 2023, Z.J. Zhou 2024 (Xiao 2024+)}Forn = 3 and r = 2,

almost perfect lattice packing of Z" by S(n, 2) does not exist, i.e.

5L(S(n, r)) <

#S(n,2)
#S(n,2)+1°




Upper bounds

The difficulty of group ring equations

»1 = 2: Perfect case (15 pages) —» Almost perfect case (50+ pages)

» Group ring becomes more complicated for large r:
sr=2:T? =26 — TP + 2ne;
sr=3:T*= 6G—3TAT - 2T® + 6nT;

sr=4:T*= 246 —12n(T?> 4+ T@P) — 6T@T2 - 37AT@ — gTOT — 6T™W +
12n(n — 1);

=r=>5 ...



Upper bounds

Symmetric polynomial approach

Theorem 1 * The following three conditions are equivalent:

a) 3 alattice tiling of Z" by Lee spheres of radius r 1

0111112101112 ]|3]14|5|6|7

b) there are an abelian group G of order |[S(n,7)| and a 5[6]7]8[9]10/11[1210(1]2
homomorphism ¢: Z" - G such that ¢|s, ) is a bijection 10/1]12/3]415]6]7/8]9/10

’ 819110111(12({0[1]2]3]|4|5

c) 3 abelian (additive) group G of order |S(n,r)| and 3R = 314|5(6|7|8[9]|10[11|12| 0
{x1,....,x,} € G,such that (). cpu;x;:u € Z™, ||ull; < rf=G. J11]12/0]1)2[3]4[5]|6|7]|8
NP e 157} 6|7|8]91011)12[0]1]2]3
Example: R = {1,5} € G = (;3. 1121314(5(6]|7(8|9]10[11
9110111112101 1[213141516

{z w;x;u € 7%, lull; < 20 ={0,+1,45,42,+10,+1 + 5} = Cy5
Xi€ER



Upper bounds

{inER wix;tu €21, |lully < r} =G with |G| = [S(n,7)| = me(nr) 2! (Tll) (D

The idea by Kim (r = 2), generalized by Zhang & Ge, and Qureshi (r > 2):

«  Suppose that |G| = pm, define projection ¢: G - (F,, +),% := ¢(x). Consider

2k 2k
_ _ _ , — 11 2k;
Qb (Fr, -+, %) = z 7 (2 um) = z (2 um) z p(g)* = { . p 12k
uezZ™:||lul|1sr X;€ER uezZm™:||ull1sr \x;€R gEeG

= By expanding,

k — _ — _ D _ Z _
Q(n,r)(xlr e, Xp) = XS (Xq, 0, X)) = C(Zk)SZk(xL 00 58 e Z;L¢(2k) pSp(Xy, -, Xp), e (#)
where 53 = 5, -+ S;, and (44, -+, 1) is a partition of 2k with £ < and S, (%, -+, %) = X1 X"

« [Kim 2017, for r = 2] If m = 1 and we can determine all S,,S,, ..., S,, = 0 then e,, = x7 ---x2 = 0 (by Newton’s

identity), where e; is the elementary symmetric polynomial of x{,--,x2, then a contradiction!

[Qureshl 2020] If p + m and the leading coefficients c(zx) # 0in FF, fork = 1, - N P=1 and Cp-1) = 0, then S, =
S4 = +-» = 8p_3 = 0 which implies cp_1)S,—1 = —m # 0, a contradlctlon!



Upper bounds

Example for r =3

Qécn,3) (fll R fn)

k-1

_ (22X o 1 g (26!

=|— + (2n+ 1)4% + 4n? + 4n + 2 Szk+;(4 + 4 +4n+2)(2t)!(2k—2t)!52t52k_2t
k—-1i-1

+fz (2k)! co o _[0 w-1t2k
3 Li L (2! (20 — 2))! (2k — 20)! 2jo2t=2) 2k=2t 7\ —m, v — 1| 2k.
i=1j=

= For 3 <n < 100, Qureshi’s approach can only exclude n = 6,12,21,39,48,64,66,75,93.

\ J
1

9 integers




Upper bounds

_ _ _ L 0, p—1142k;
C(Zk)SZR(xll lxn) + Z/li(Zk) CASA(xl! ,.X'n) — {_m p — 1| 2k. "'(#)

Use (#) to derive the following symmetric polynomials:

1. power sum polynomials sequence S;, Sy, ..., Sk, ..., with indeterminants
X, X5, ...,

2. Use §; and Newton’s identity
ke = X (1) ey,

to determine elementary symmetric polynomials sequence eq, e, ..., ey, ..

")

1 : _vs2 L 2 Z
with indeterminants Y3, Y5, ..., where ¢, = }x ---x; and p; = Sy;.

* There are several cases leading to contradictions.



Upper bounds

Some necessary conditions

— \'n 72k
[52,54, ...,Sp_l, ], SZk = i=1X{

le1, e, sy ], € = XX X, 0 X

. p-1
* [S2ili=1 2. must be of period pT;

Sp,—1 = the number of nonzero elements in ¥;s (mod p);

en+1 = ptz = - =0;

There should not be too many zero’s in x;s.



Upper bounds

Casel:S,_;>n

Example 1. Forr = 3,n = 26, |G| = 24857 =7 X 53 X 67,p = 67,m = 371.
S — [O, ""OISZX]_S — X, O, "'JO'SZX26 — O, "'SZX33 — 33, ]

n

Seq = szH =33 > 26
=1



Upper bounds

Casell: e; # 0 forj > n

Example 2. n = 40, |G| = 88641 = 3% X 7 X 67,p = 67, m = 1323. Now
S = [O, N O, SZX14 — Xl’ O, ke ) O, SZX18 — Xz, O, O, SZX33 — 33, ]

and
e = [0,0,0,0,0,0,0,0,0,0,0,0,0,43X;,0,0,0,26 X5, 0,0,0,0,0,0,0,0,0,47X%,0,0,0,
21X,X,,1,0,0,64X%,0,0,0,0,0,41X3,0,0,0,51X%X,,34 X;,0,0,62X,X7,20X,,
0,0,26X5,0,45X+,0,0,0,6X;X,,59X%,0,0,7X%X%,19X,X>, 66, ...]

€66 — 66 #+ 0.



Upper bounds

Case lll: toomany e; =0 fori <n

Example 3. Forr = 3,n=12,|G| = 2625 =7 x 5% x 3,p = 7,m = 375.

s =10,0,1,0,0,1,0,0,1,0,0,1 ... ]
e = [0,0,5,0,0,6,¥,,0,0,2¥;,0,0,¥,,¥,,0,0,28,,0,0,], e15 = ¥4, €14 = Y,
Recall ¢} = Zfizl fizk,go: G- (IFp, +),% := @(x) . Hence there are exactly M =6
nonzero X;’s , 1.e. (n — M) x;’s belong to the subgroup €375 = kerp < G

n—M n—M
1+6(n—M)+12< )+8< )=377>m=375




Upper bounds

Our improvement (Xiao, Z. 2024+) for the nonexistence of lattice tiling of Z" by
Lee spheres S(n,r) (i.e., 6y, (S (n, r)) < 1):
»When r = 3, we can exclude every 3 < n < 1000, except for n = 122 and 634.

»When each prime divisor of [S(n, 3)| is much smaller than n, it becomes

difficult to get a contradiction. For instance, n = 122, |[S(n,3)| = 3 X 5% X 7% X
23 X 29.

» A recursive formula for c; (k) and for any  and large n in
0, p—-1t2k;
m p-tizk )

»This approach also works for other r and lattice packings with density = 1
(for instance, the almost perfect case).

C21)S2k (X1, 5 %) + Xpseany 52 (X1, -+, X)) = {

»Projection from G to Zpi1 X w0 X Zpis (instead of F,)) is also possible.
1 S



Concluding Remarks

* For fixed r, §; (S(n r))

: 2
(2T+1)r" n — oo. In particular, 5L(S(n, 2)) - no®

#S(n,2)
#S(n,2)+1

= Almost perfect ~ §;, = only exists for n = 1,2.

* Symmetric polynomial method: Improved algorithm for radius > 2 and many small n.
Questions:

« How to prove 6, (S(n,1)) < 1 for infinitely many n?

(2k)!

2x9¥ k t k—t
( + (Zn -+ 1)4 -+ 4n + 4n + 2) SZk + Z (4‘ + 4 + 4n + 2) (201(2k—20)! SZtSZR—Zt +
k=1 yri=1 (2K)! _) 0, v—1+42k; _
Z j=1 (2j)!(2i—2j)!(2k—2i)!SZjSZi_ZjSZk_Zi ~ {—m, v—1]2k. (/=2

|1S(n, 3)| = —Tl —2n?% +- 7l+-1

= General (non-lattice) cases?




Thanks for your attention!
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