# On Yamada polynomials of spatial graphs and polynomials of related knots

Andrei Vesnin

Sobolev Institute of Mathematics of the Russian Academy of Sciences (Novosibirsk, Russia) National Research Novosibirsk State University (Novosibirsk, Russia) National Research Tomsk State University (Tomsk, Russia)

The International Conference and PhD-Master Summer School on Graphs and Groups, Complexity and Convexity Hebei Normal University, August 12-24, 2024

4 **A** N A **A** N A **A** N

The talk is based on the join work with Olga Oshmarina (Novosibirsk State University):

O. Oshmarina, A. Vesnin, *Polynomials of complete spatial graphs and Jones polynomial of related links*. arXiv:2404:12264, 28 pp.

< □ > < □ > < □ > < □ > < □ > < □ >

# 1 Knots, Spatial Graphs, Constituent Knots, Reidemeister moves

# 2 Knots and Links in Spatial Complete Graphs





Relations Between Yamada Polynomial and Jones Polynomial

# Moots, Spatial Graphs, Constituent Knots, Reidemeister moves

# 2 Knots and Links in Spatial Complete Graphs

3 Polynomial Invariants of Spatial Graphs

# 4 Relations Between Yamada Polynomial and Jones Polynomial

#### Knots and their diagrams

Knot is an embedding of  $S^1$  in  $S^3$ . Two knots K and K' are equivalent if there is an ambient isotopy  $h_t$ ,  $t \in [0, 1]$ , of  $S^3$  such that  $h_0(K) = K$  and  $h_1(K) = K'$ .



Enumeration of knots by number of crossings was started by Tait in1890. There are more than 350 millions of knots with at most 19 crossings. [Picture from S.D.P. Fielden, D.A. Leigh, S.L. Woltering, Molecular knots. 2017] [B. Burton, The Next 350 Million Knots, 2022.]

Vesnin (SIM, NSU, TSU)

On Yamada polynomials

#### Links and their diagrams

Link is an embedding of a finite number of disjoint copies of  $S^1$  in  $S^3$ .



Links admitting diagrams with small number of crossings.

Two links are said to be equivalent if they are ambient isotopic.

[Picture form G.-H. Guo, Y. Jiao, Y. Feng, J.F.Stoddart, The Rise and Promise of Molecular Nanotopology. July 2021] 📑 🔊 🔍

Vesnin (SIM, NSU, TSU)

On Yamada polynomials

# Theorem (K. Reidemeister, 1927)

Two links *K* and *K'* in  $\mathbb{S}^3$  are ambient isotopic if and only if a diagram of *K* can be transformed into a diagram of *K'* by a finite sequence of moves among (I)–(III) and plane isotopy.



< A >

#### States of a knot diagram

Let *K* be a link. Let *D* be a diagram of *K*. Assume that *D* has *n* crossings. For any crossing  $z \in D$  define local transformations of *D*: *A*-split and *B*-split:



After splitting in all crossings of *D* we get a state *S* that is a collection of closed curves on a plane.

For any state *S* let a(S) be number of *A*-splits, b(S) number of *B*-splits, and |S| number of connected components of *S*.

Observe that a(S) + b(S) = n and diagram *D* has  $2^n$  states.

Such (*A*, *B*)-labeling in a crossing point was used by Gauss's student Johann Benedict Listing in his book «Preliminary studies on topology», 1847.

< □ > < □ > < □ > < □ > < □ > < □ >

Consider (A, B)-labelling for a diagram  $D_T$  of the trefoil knot T:





Labelling of  $D_T$ .

A state S of  $D_T$ .

Define a «bracket» polynomial

$$\langle D_K \rangle = \sum_S A^{a(S)} B^{b(S)} d^{|S|},$$

where the sum is taken over all states of a diagram  $D_K$  of a knot K. For  $D_T$  we have  $2^3$  states and

$$\langle D_T \rangle = A^3 d^2 + 3A^2 B d + 3A B^2 d^2 + B^3 d^3$$

< □ > < □ > < □ > < □ > < □ >

#### Jones polynomial of a link

To make  $\langle D_K \rangle$  invariant under Reidemeister moves suppose  $B = A^{-1}$  and  $d = -(A^2 + A^{-2})$ . Then  $\langle D_K \rangle$  is called the Kauffman bracket polynomial. Give an orientation to link *K* and define writhe number of  $D_K$  by  $w(D_K) = \sum_c \varepsilon(c)$  where sum is taken over all crossings.

$$\varepsilon(\mathbf{c}) = +1$$
  $\varepsilon(\mathbf{c}) = -1$ 

# Theorem (L. Kauffman)

Let  $D_K$  be a diagram of oriented link  $K \subset \mathbb{S}^3$ . Then Laurent polynomial

$$V(D_{\mathcal{K}}; \mathcal{A}) = (-\mathcal{A}^3)^{-w(D_{\mathcal{K}})} \frac{\langle D_{\mathcal{K}} \rangle}{(-\mathcal{A}^2 - \mathcal{A}^{-2})}$$

is an invariant of a link K under an ambient isotopy.

Denote  $t = A^{-4}$ . Then  $V_{\mathcal{K}}(t) = V(\mathcal{K}; t^{-1/4}) \in \mathbb{Z}[t^{\pm 1/2}]$  is the Jones polynomial.

Vaughan Jones was awarded the Fields medal in 1990.

Vesnin (SIM, NSU, TSU)

Let *G* be a graph with finite set *V* of vertices and finite set *E* of edges. Loops and multi-edges are admitted in *G*.

An embedding  $f : G \to S^3$  is called a spatial embedding of *G*, and  $\mathcal{G} = f(G)$  is called a spatial *G*-graph.

If  $\gamma$  is a cycle in **G** then its spatial embedding  $f(\gamma)$  is a knot in  $\mathbb{S}^3$ .

If  $\lambda = \alpha \cup \beta$  is a couple of disjoint cycles in *G* then its spatial embedding  $f(\lambda)$  is a 2-component link in  $\mathbb{S}^3$ .

Thus, the theory of spatial graphs is a natural extension of the knot theory.

We will work in the piecewise-linear category and graphs are considered to be 1-dimensional finite topological complexes.

Spatial graphs  $\mathcal{G}$  and  $\mathcal{G}'$  are said to be equivalent if there is an ambient isotopy of  $S^3$  which transforms  $\mathcal{G}$  into  $\mathcal{G}'$ .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

#### $\Theta$ -graph and spatial $\Theta$ -graphs

Even if an (abstract) graph is simple combinatorially, its embedding to  $S^3$  can be very complicated topologically.

Let  $\Theta$  be a theta-graph and  $\mathcal{G}$  be a spatial  $\Theta$ -graph.

For  $e_1$ ,  $e_2$  and  $e_3$ , edges of a  $\Theta$ , the images  $K_1 = f(e_2 \cup e_3)$ ,  $K_2 = f(e_1 \cup e_3)$ , and  $K_3 = f(e_1 \cup e_2)$  are said to be constitute knots of the spatial graph  $\mathcal{G}$ .

# Theorem (K. Wolcott, 1986)

For any three given knots  $K_1$ ,  $K_2$ , and  $K_3$  there exists a spatial  $\Theta$ -graph  $\mathcal{G}$  such that these knots are realized as constitute knots of  $\mathcal{G}$ . Moreover, knots  $K_1$ ,  $K_2$ , and  $K_3$  do not determine spatial  $\Theta$ -graph uniquely.

[Keith Wolcott, The knotting of Theta-curves and other graphs in S<sup>3</sup>, Thesis, U. Iowa, 1986]

#### $\Theta$ -graphs with at most 5 crossings in a diagram



[J. Simon, A topological approach to the stereochemistry of nonrigid molecules, Graph theory and topology in chemistry, 1987.]

[H. Moriuchi, An enumeration of theta-curves with up to seven crossings, JKTR 2009, 18(2), 167–197.] 😑 🖌 😑 🖉

| Vesnin | (SIM, NSU | , TSU |
|--------|-----------|-------|
|--------|-----------|-------|

On Yamada polynomials

#### Theorem (L. Kauffman, S. Yamada, 1989)

Two spatial graphs  $\mathcal{G}$  and  $\mathcal{G}'$  in  $\mathbb{S}^3$  are ambient isotopic if and only if a diagram of  $\mathcal{G}$  can be transformed to a diagram of  $\mathcal{G}'$  by a finite sequence of moves among (I)–(VI) and plane isotopy.



# 1 Knots, Spatial Graphs, Constituent Knots, Reidemeister moves

# 2 Knots and Links in Spatial Complete Graphs

3 Polynomial Invariants of Spatial Graphs

# 4 Relations Between Yamada Polynomial and Jones Polynomial

4 10 10 10 10

4 A 1

#### Existence of knots and links in a spatial complete graph

If a graph is "large enough" combinatorially, then any embedding is "knotted". Let  $\mathbf{K}_{\mathbf{n}}$  be a complete graph with *n* vertices. A graph is complete if any two vertices are connected by edge, so  $\mathbf{K}_{\mathbf{n}}$  has  $\frac{n(n-1)}{2}$  edges.

# Theorem (J. Conway, C. Gordon, 1983)

(1) Each embedding of K<sub>6</sub> in S<sup>3</sup> contains a pair of cycles which form an unsplittable 2-component link.
(2) Each embedding of K<sub>7</sub> in S<sup>3</sup> contains a cycle which is a non-trivial knot.

A spatial graph  $\mathcal{G}$  is said to be splittable if there exists a 2-sphere S in  $\mathbb{S}^3 \setminus \mathcal{G}$  which splits  $\mathbb{S}^3$  into 3-balls  $B_1^3$  and  $B_2^3$  with both  $B_1^3 \cap \mathcal{G}$  and  $B_2^3 \cap \mathcal{G}$  nonempty. Otherwise  $\mathcal{G}$  is said to be unsplittable.



[J. Conway, C.McA. Gordon, Knots and links in spatial graphs, J. Graph Theory, 1983, 7, 445-453.]

#### Complete graph K<sub>4</sub> and its embeddings



#### Theorem (M. Yamamoto, 1990)

Let  $c_1, \ldots, c_7$  be the seven cycles in  $\mathbf{K}_4$ . For any ordered 7-tuple  $(K_1, \ldots, K_7)$  of knots, there is a spatial embedding of  $\mathbf{K}_4$ , such that cycles  $(c_1, \ldots, c_7)$  are embedded as knots  $(K_1, \ldots, K_7)$ .

[M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl., 1990, 36(3), 291–298.]

< □ > < □ > < □ > < □ > < □ > < □ >



[J. Simon, A topological approach to the stereochemistry of nonrigid molecules, Graph theory and topology in chemistry, 1987.]

э

(日)

# 1 Knots, Spatial Graphs, Constituent Knots, Reidemeister moves

# 2 Knots and Links in Spatial Complete Graphs

# 3 Polynomial Invariants of Spatial Graphs

# 4 Relations Between Yamada Polynomial and Jones Polynomial

Vesnin (SIM, NSU, TSU)

On Yamada polynomials

August 17, 2024 19/41

4 10 10 10 10

4 A N

Let  $\mathcal{G}$  be a spatial graph. Let D be a diagram of  $\mathcal{G}$ .

For any crossing  $z \in D$  we define three local transformations of *D*:  $s_+$ -split,  $s_-$ -split, and  $s_0$ -split:



After splitting in all crossings of *D* we get a state that is a plane graph.

#### Yamada polynomial H(G) of a graph

Let G = G(V, E) be a (combinatorial) graph, possibly with loops and multiply edges, where V = V(G) is the set of vertices and E = E(G) is the set of edges.

Denote the number of connected components by  $\omega(G)$  and the 1-st Betti number by

$$\beta(\mathbf{G}) = |\mathbf{E}(\mathbf{G})| - |\mathbf{V}(\mathbf{G})| + \omega(\mathbf{G}).$$

#### Definition

For a graph G define Laurent polynomial H(G; A) in A by

$$H(G; \mathbf{A}) = \sum_{\mathbf{F} \subseteq \mathbf{E}(\mathbf{G})} (-1)^{\omega(\mathbf{G} - \mathbf{F})} (-\mathbf{A} - 2 - \mathbf{A}^{-1})^{\beta(\mathbf{G} - \mathbf{F})}$$

where *F* passes over all subsets of E(G).

Here G - F is a graph with the vertex set V(G) and the edge set E(G) - F.

イロト イポト イヨト イヨト 二日

#### Some properties of H(G)

Let G = (V, E) be a finite graph. For edge  $e \in E(G)$  denote by G - e a graph obtained by deletion of e, and by G/e the graph, obtained by contraction of e.



The following properties of H(G) hold.

1°. H(G) = H(G/e) + H(G - e). (The same as for the Tutte polynomial!) 2°. If *G* and *G'* be homeomorphic graphs, then H(G) = H(G'). 3°. If  $G \cup G'$  is a disjoint union of graphs, then  $H(G \cup G') = H(G) \cdot H(G')$ . 4°. If  $G \cdot G'$  is a union along one vertex, then  $H(G \cdot G') = -H(G) \cdot H(G')$ . 5°. If *G* has a isthmus, then H(G) = 0. 6°. Let  $L_q$  be the one-vertex graph with *q* loops, then  $H(L_q) = (-1)^{q+1}(A + 1 + A^{-1})^q$ .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

#### States and Yamada polynomial of a spatial graph

Assume that diagram D of a spatial graph G has n crossings. Let S be a state of D, i.e., a plane graph, obtained by applying splits to all crossings of D.

Let U(D) be the set of all states of D. Obviously,  $|U(D)| = 3^n$ .

Suppose that state S is obtained from *D* by applying  $m_1(S) s_+$ -splits,  $m_2(S) s_-$ -splits, and so, by  $(n - m_1(S) - m_2(S)) s_0$ -splits.

#### Definition

Yamada polynomial Y(D) of a spatial graph diagram D is a Laurent polynomial in A, defined by

$$\mathbf{Y}(\mathbf{D}) = \mathbf{Y}(\mathbf{D}; \mathbf{A}) = \sum_{\mathbf{S} \in U(\mathbf{D})} \mathbf{A}^{m_1(\mathbf{S}) - m_2(\mathbf{S})} \mathbf{H}(\mathbf{S}; \mathbf{A}).$$

For the empty graph we suppose  $Y(\emptyset) = 1$ . If diagram *D* of *G* has no crossings, then we get Y(D) = H(G; A).

[S. Yamada, An invariant of spatial graphs, J. Graph Theory, 1989, 13, 537-551.]

Vesnin (SIM, NSU, TSU)

A D F A B F A B F A B F B B

Maximal degree of a graph is the maximum of degres of its vertices,  $\max\{deg(v)|v \in V(G)\}.$ 

# Theorem (S. Yamada, 1989)

- If diagrams *D* and *D'* are equivalent under generalized Reidemeister moves (I) – (V), then *Y*(*D*) and *Y*(*D'*) are equal up to a multiplier (-*A*)<sup>k</sup> for some integer *k*.
- (2) Let *D* and *D'* be diagrams of spatial graphs of maximal degree at most 3. If diagrams *D* and *D'* are equivalent under generalized Reidemeister moves (I) (VI), then Y(D) and Y(D') are equal up to a multiplier (-A)<sup>k</sup> for some integer *k*.

If *D* is a diagram of a spatial graph *G* we will denote Y(D) by Y(G).

[S. Yamada, An invariant of spatial graphs, J. Graph Theory, 1989, 13, 537-551.]

Vesnin (SIM, NSU, TSU)

On Yamada polynomials

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

#### Yamada polynomials of spatial $K_4$ -graphs with at most 4 crossings

Yamada polynomials of above pictured spatial K<sub>4</sub>-graphs  $\Omega_1, \ldots, \Omega_{10}$  are presented in the table.

| Graph $\mathcal{G}$ | Yamada polynomial $Y(G)$                                                                                          |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| $\Omega_1$          | $A^{3}+2A+2A^{-1}+A^{-3}$                                                                                         |
| $\Omega_2$          | $A^{8}+A^{6}+A^{5}-A^{4}+A^{3}-2A^{2}+A-1+A^{-1}+A^{-2}+A^{-3}+A^{-4}+A^{-5}$                                     |
| $\Omega_3$          | $2A^{6}+A^{4}+A^{3}-2A^{2}-4-A^{-1}-3A^{-2}-A^{-3}+A^{-7}$                                                        |
| $\Omega_4$          | $A^{8}-A^{7}+A^{6}-A^{4}+A^{3}-2A^{2}+A-2-A^{-2}-A^{-3}-A^{-4}-A^{-6}$                                            |
| $\Omega_5$          | $A^{8} - A^{7} + A^{6} - A^{5} - A^{4} - 2A^{2} + A - 1 + 2A^{-1} + A^{-2} + 2A^{-3} + A^{-4} + 2A^{-5} + A^{-7}$ |
| $\Omega_6$          | $A^7 - A^6 + A^4 + A^2 + 3A + 3A^{-1} - A^{-2} + A^{-3} - A^{-4} - 2A^{-5} + A^{-6} - A^{-7} + A^{-9}$            |
| Ω <sub>7</sub>      | $-A^{8}-A^{5}+A^{4}+A^{3}+3A+3A^{-1}+A^{-3}+A^{-4}-A^{-5}-A^{-8}$                                                 |
| $\Omega_8$          | $A^9 - A^8 + 2A^6 - A^5 + A^4 + 2A^3 - A^2 + 2A - 2 + A^{-1} - A^{-2} - A^{-3} + 2A^{-4} + 2A^{-7}$               |
| $\Omega_9$          | $-A^{8}+A^{7}-A^{5}+2A^{4}+2A-1+2A^{-1}-A^{-2}+A^{-3}+A^{-4}-A^{-5}+A^{-6}+A^{-7}-A^{-8}+A^{-9}$                  |
| $\Omega_{10}$       | $A^9 - A^8 + A^7 - A^5 + A^4 + 2A + 2A^{-1} + A^{-4} - A^{-5} + A^{-7} - A^{-8} + A^{-9}$                         |

[A. Vesnin, A. Dobrynin, The Yamada polynomial for graphs, embedded knot-wise into three-dimensional space, Vychisl. Sistemy, 155 (1996) 37–86. (in Russian). An English translation is available at https://www.researchgate.net/publication/266336562.]

Vesnin (SIM, NSU, TSU)

On Yamada polynomials

A D F A B F A B F A B F B B

# Theorem (M. Li, F. Lei, F. Li, A. Vesnin, 2019)

The set of zeros of Yamada polynomial of all spatial graphs is dense in the complex plane  $\mathbb{C}$ .

# The proof is constructive, the infinite family of spatial graphs with this property is constructed.

[M. Li, F. Lei, F. Li, A. Vesnin, On the Yamada polynomial of spatial graphs obtained by edge replacements, J. of Knot Theory and Ramifications, 2019, 27(9), 1842004.]
 [M. Li, F. Lei, F. Li, A. Vesnin, Density of roots of the Yamada polynomial of spatial graphs. Proc. Steklov Institute of Mathematics.

2019, 305, 135-148.]

(日)

# 1 Knots, Spatial Graphs, Constituent Knots, Reidemeister moves

2 Knots and Links in Spatial Complete Graphs

Polynomial Invariants of Spatial Graphs

Relations Between Yamada Polynomial and Jones Polynomial

4 10 10 10 10

4 A N

#### Jaeger polynomial and Yamada polynomial

F. Jaeger [1997] introduced a Laurent polynomial invariant of a spatial graph  $\mathcal{G}$  which can be calculated from its diagram.

We call this invariant Jaeger polynomial and denote it by  $\mathfrak{J}(\mathcal{G}; A) \in \mathbb{Z}[A^{\pm 1}]$ .

Y. Huh [2024] established the following relation between Jaeger polynomial and Yamada polynomial.

### Lemma (Y. Huh, 2024)

Let G be a planar graph with vertices set V(G) and edges set E(G). Let D be a diagram of a spatial embedding of G. Then

$$\mathfrak{J}(\boldsymbol{D};\boldsymbol{A}) = \frac{\boldsymbol{Y}(\boldsymbol{D};\boldsymbol{A}^4)}{-(\boldsymbol{A}^2 + \boldsymbol{A}^{-2})^{|\boldsymbol{E}(\boldsymbol{G})| - |\boldsymbol{V}(\boldsymbol{G})| + 1}}.$$

We will use this Lemma as a definition of  $\mathfrak{J}(\mathbf{G}; \mathbf{A})$  for  $\mathbf{G} = \mathbf{K}_4$ .

[F. Jaeger, On some graph invariants related to the Kauffman polynomial, Progress in knot theory and related topics, 1997.] [Y. Huh. Yamada polynomial and associated link of  $\theta$ -curves. Discrete Mathematics. 2024, 347, paper number 113684]

Vesnin (SIM, NSU, TSU)

On Yamada polynomials

A D F A B F A B F A B F B B

#### Spatial $K_4$ -graph and band diagram

Let  $\mathcal{G}$  be a spatial embedding of  $\mathbf{K}_4$ , and D be a diagram of  $\mathcal{G}$ . Taking bands instead of edges we will get a band diagram which represents a three-punctured disk S, where D is a spine of S.



Denote  $L = \partial S$ , then L is a link in  $S^3$  with four components.

Vesnin (SIM, NSU, TSU)

On Yamada polynomials

A D N A B N A B N

#### Seifert linking form

For an oriented surface *S* let *x* and *y* be closed curves on *S*. Let  $x^+$  denote the result of pushing *x* a small amount into  $S^3 \setminus S$  along a positive normal to *S*. The function

 $\langle [\mathbf{x}], [\mathbf{y}] \rangle : H_1(\mathbf{S}, \mathbb{Z}) \times H_1(\mathbf{S}, \mathbb{Z}) \to \mathbb{Z}$ 

defined by  $\langle [x], [y] \rangle = lk(x^+, y)$  is known as the Seifert form for S.

# Theorem (KSWZ, 1993)

Let  $\mathcal{G}_0$  be a planar embedding of a connected trivalent planar graph G. Suppose  $\mathcal{G}_0$  is prime.

- If the number of edges in G is at most 6, then for each G there exists a unique (up to ambient isotopy) surface S(G) with zero Seifert form.
- (2) If the number of edges in G is more than 6, then
  - (i) there exists a  $\mathcal{G}$  with no  $S(\mathcal{G})$  of zero Seifert form;
  - (ii) if there is an S(G) of zero Seifert form, it is the unique such surface.

In this sense, spatial  $K_4$ -graphs are the largest «good» case.

[L. Kauffman, J. Simon, K. Wolcott, P. Zhao, Invariants of theta-curves and other graphs in 3-space, Topology Appl., 1993]

Vesnin (SIM, NSU, TSU)

For i, j = 1, ..., 6 we denote by  $w_{ij}$  the sum of signs over all crossings of  $a_i$  and  $a_i$ , in particular, the sum over all self-crossings if j = i.

$$\varepsilon(\mathbf{c}) = +1$$
  $\varepsilon(\mathbf{c}) = -1$ 

[KSWZ]: To obtain a surface with zero Seifert form we start from a band diagram and apply additional twists with half-ntegers  $n_1, \ldots, n_6$  such that:

$$\begin{cases} n_1 = -w_{11} + \frac{1}{2}(-w_{23} - w_{25} + w_{21} + w_{13} + w_{15} + w_{36} - w_{16} + w_{56}); \\ n_2 = -w_{22} + \frac{1}{2}(-w_{24} + w_{14} + w_{46} + w_{23} - w_{13} - w_{36} + w_{12} + w_{26}); \\ n_3 = -w_{33} + \frac{1}{2}(w_{34} - w_{14} + w_{45} + w_{23} + w_{25} - w_{12} + w_{13} - w_{35}); \\ n_4 = -w_{44} + \frac{1}{2}(-w_{24} + w_{34} - w_{46} + w_{36} - w_{26} - w_{45} - w_{25} + w_{35}); \\ n_5 = -w_{55} + \frac{1}{2}(-w_{35} + w_{15} - w_{36} + w_{16} - w_{56} - w_{34} + w_{14} - w_{45}); \\ n_6 = -w_{66} + \frac{1}{2}(-w_{16} + w_{26} + w_{25} - w_{15} - w_{56} + w_{24} - w_{14} - w_{46}). \end{cases}$$

Vesnin (SIM, NSU, TSU)

< □ > < □ > < □ > < □ > < □ >

#### A link associated to diagram D

Taking above half-integers «twisting parameters»  $n_1, \ldots, n_6$  we modify surface S by adding  $n_i$ -twists on bands.



Let  $\mathcal{L} = \mathcal{L}(n_1, \dots, n_6)$  be a link obtained by applying  $n_i$  full twists as presented.

A link  $\mathcal{L} = \partial S$  is said to be an associated link to diagram D.

| Vesnin (SIM, NSU, TSU) | On Yamada polynomials |     | Augus | t 17, 202 | 4 | 32/41 |
|------------------------|-----------------------|-----|-------|-----------|---|-------|
|                        | <                     | ₫ > | < ≣ > | < ≣ >     | 2 | 900   |

Let *D* be a diagram of a spatial  $K_4$ -graph  $\mathcal{G}$ . Let  $n_1, \ldots, n_6$  be twisting parameters for *D*. Define a normalized Jaeger polynomial;

$$\tilde{\mathfrak{J}}(\boldsymbol{D}) = (-\boldsymbol{A})^{8(n_1+n_2+n_3+n_4+n_5+n_6)} \,\mathfrak{J}(\boldsymbol{D}).$$

# Theorem 1 [Oshmarina, V., 2024]

Let  $\mathcal{G}$  be an embedding of  $\mathbf{K}_4$  in  $\mathbb{S}^3$ , and D a diagram of  $\mathcal{G}$ . Then  $\tilde{\mathfrak{J}}(D)$  is an invariant of  $\mathcal{G}$ .

イロッ イボット イヨッ

#### Knots and theta-subgraphs in K<sub>4</sub>



For a link  $L \subset S^3$  denote its Jones polynomial by  $V(L) \in \mathbb{Z}[A^{\pm 1}]$ .

Theorem 2 [Oshmarina, V., 2024]

Let  $\mathcal{G}$  be an embedding of  $\mathbf{K}_4$  in  $\mathbb{S}^3$ . Denote

- by L the 4-component link associated to a diagram of G,
- by  $K_1, \ldots, K_7$  knots which are embeddings of cycles of  $K_4$ , and

• by  $\Theta_1,\ldots,\Theta_6$  spatial graphs which are embeddings of theta-subgraphs.

Then

$$\tilde{\mathfrak{J}}(\mathcal{G}) = V(\mathcal{L}) + \frac{1}{\varphi} \sum_{i=1}^{6} \tilde{\mathfrak{J}}(\Theta_i) - \frac{1}{\varphi^2} \sum_{j=1}^{7} \tilde{\mathfrak{J}}(K_j) + \frac{1}{\varphi^3},$$

where  $\varphi = \mathbf{A}^2 + \mathbf{A}^{-2}$ .

A D F A B F A B F A B F B B

# Corollary (Oshmarina, V., 2024)

Let  $\mathcal{G}$  be an embedding of  $\mathbb{K}_4$  in  $\mathbb{S}^3$ . Denote

- by L the associated 4-component link to a diagram of G,
- by  $\mathcal{L}_i$ ,  $i = 1, \dots, 6$  associated 3-component links to  $\Theta$ -subgraphs of  $\mathcal{G}$ ,
- by K<sub>j</sub><sup>(2)</sup>, j = 1,...,7, 2-component links which are 2-parallel to constitute knots of G with some additional full-twists.

Then

$$\widetilde{\mathfrak{J}}(\mathcal{G}) = \mathcal{V}(\mathcal{L}) + rac{1}{arphi} \sum_{i=1}^{6} \mathcal{V}(\mathcal{L}_i) + rac{2}{arphi^2} \sum_{j=1}^{7} \mathcal{V}(\mathcal{K}_j^{(2)}) + rac{6}{arphi^3}.$$

where  $\varphi = \mathbf{A}^2 + \mathbf{A}^{-2}$ .

イロト イポト イヨト イヨト 二日

Spatial  $\mathbf{K}_4$ -graph  $\Omega_7$ .



Spatial  $K_4$ -graph  $\Omega_7$ .

The normalized Jeager polynomial:

 $\widetilde{\mathfrak{J}}(\Omega_7) = \frac{-1}{\varphi^3} (-A^{32} - A^{20} + A^{16} + A^{12} + 3A^4 + 3A^{-4} + A^{-12} - A^{-20} - A^{-32}),$ where  $\varphi = A^2 + A^{-2}$ .

Twisting parameters are  $n_1 = -1$ ,  $n_4 = 1$ , and  $n_i = 0$  for i = 2, 3, 5, 6.

#### An example for Theorem 2 (part II)

The associated link  $\mathcal{L}$  to the spatial  $\mathbf{K}_4$ -graph  $\Omega_7$ :



- Jones polynomial  $V(\mathcal{L}) = A^{30} 2A^{26} + A^{22} + A^{18} 3A^{14} + 3A^{10} 3A^{6} 2A^2 2A^{-2} 3A^{-6} + 3A^{-10} 3A^{-14} + A^{-18} + A^{-22} 2A^{-26} + A^{-30}.$
- The complement  $\mathbb{S}^3 \setminus \mathcal{L}$  admits a complete Riemann metric of curvature -1. The number  $\operatorname{vol}(\mathbb{S}^3 \setminus \mathcal{L}) = 18.9807764741...$  is an invariant of  $\Omega_7$  under an ambient isotopy.

Vesnin (SIM, NSU, TSU)

A D K A D K A D K A D K

#### An example for Theorem 2 (part III)

Six theta-subgraphs  $\Theta_1, \ldots, \Theta_6$ .





 $\ominus$ 

Theta-subgraph  $\Theta_1$ .

Theta-subgraph  $\Theta_4$ .

Theta-subgraphs  $\Theta_2, \Theta_3, \Theta_5, \Theta_6$ .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ

$$\begin{split} \widetilde{\mathfrak{J}}(\Theta_1) &= \frac{1}{\varphi^2} (-\mathbf{A}^{36} + \mathbf{A}^{28} + \mathbf{A}^{20} + \mathbf{A}^{16} + \mathbf{A}^8 + 1 + \mathbf{A}^{-12} + \mathbf{A}^{-24}) \\ \widetilde{\mathfrak{J}}(\Theta_4) &= \frac{1}{\varphi^2} (\mathbf{A}^{24} + \mathbf{A}^{12} + 1 + \mathbf{A}^{-8} + \mathbf{A}^{-16} + \mathbf{A}^{-20} + \mathbf{A}^{-28} - \mathbf{A}^{-36}) \\ \widetilde{\mathfrak{J}}(\Theta_i) &= \frac{1}{\varphi^2} (\mathbf{A}^8 + \mathbf{A}^4 + 2 + \mathbf{A}^{-4} + \mathbf{A}^{-8}) \quad \text{for} \quad i \in \{2, 3, 5, 6\}. \end{split}$$

э

Seven constituent knot  $K_1, \ldots, K_7$ .

The knot  $K_1$  formed by set of edges  $\{2, 3, 5, 6\}$  is the figure-eight knot  $4_1$ , other knots  $K_2, \ldots, K_7$  are trivial knots. Therefore,

$$\widetilde{\mathfrak{J}}(\mathbf{K}_1) = -\mathbf{A}^{26} + \mathbf{A}^{22} - \mathbf{A}^2 - \mathbf{A}^{-2} + \mathbf{A}^{-22} - \mathbf{A}^{-26} + \frac{1}{\varphi}$$

and

$$\widetilde{\mathfrak{J}}(\mathcal{K}_2) = \widetilde{\mathfrak{J}}(\mathcal{K}_3) = \widetilde{\mathfrak{J}}(\mathcal{K}_4) = \widetilde{\mathfrak{J}}(\mathcal{K}_5) = \widetilde{\mathfrak{J}}(\mathcal{K}_6) = \widetilde{\mathfrak{J}}(\mathcal{K}_7) = -\mathcal{A}^2 - \mathcal{A}^{-2} + \frac{1}{\varphi}.$$

Thus, the following relation holds for  $\Omega = \Omega_7$ :

$$\widetilde{\mathfrak{J}}(\Omega) - \mathcal{V}(\mathcal{L}) = rac{1}{arphi} \sum_{i=1}^{6} \widetilde{\mathfrak{J}}(\Theta_i) - rac{1}{arphi^2} \sum_{j=1}^{7} \widetilde{\mathfrak{J}}(\mathcal{K}_j) + rac{1}{arphi^3}.$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Thank you for your attention!

æ

• • • • • • • • • • • •