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The talk is based on the join work with Olga Oshmarina (Novosibirsk State
University):

O. Oshmarina, A. Vesnin, Polynomials of complete spatial graphs and Jones
polynomial of related links. arXiv:2404:12264, 28 pp.
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Knots and their diagrams
Knot is an embedding of S1 in S3. Two knots K and K′ are equivalent if there
is an ambient isotopy ht, t ∈ [0, 1], of S3 such that h0(K) = K and h1(K) = K′.

two representations of a 10-crossing knot called the “Perko
pair” in the 1970s.[39] The tabulation of alternating knots has
been extended up to 22 crossings, with more than 6 billion
found to date.[29] Figure 11 shows a knot table with all prime
knots having up to eight crossings.

2.10. Braid Representations

A braid is a set of discrete strands that cross each other in
a defined pattern. To create a corresponding closed-loop
knot, the ends of the strands are connected so that no
additional crossings are generated, as illustrated in Figure 12.
Every knot can be represented as a braid and, therefore, for

chemists, a braid indicates a potential synthetic pathway to
any given molecular knot topology. The pattern for the
simplest torus knots in Figure 10 a consists of two strands
twisted about each other with the ends connected. Braid
representations of higher order torus knots are shown in
Figure 12 a,b.

Figure 12 c,d show braid representations for several achi-
ral knots. Note that the braids have an inversion center
(indicated with a dot, i, in the figure). Such braids are called
reverse rotated palindromes (RRP),[45] and if a knot can be
represented by an RRP then it must be achiral. The braid in
Figure 12 c forms the achiral 41 knot (n = 1), repeating the
recurring unit (n = 2) gives the achiral 63 knot and repeating it
once more (n = 3) leads to the achiral 89 knot. The braid

Figure 11. Knot table of all prime knots having up to eight crossings including the unknot 01. Torus knots are depicted in red, achiral knots in
black, non-invertible knots in white, and non-alternating knots in green.

Figure 12. Braid representations of knots. a) A braid for the generation of three-strand torus knots. A knot is generated from the corresponding
braid by connecting opposite ends without generating additional crossings. b) This braid generates torus knots with one additional toroidal
revolution for each extra value of n. Following this pattern with additional strands in the braid, any torus knot can be obtained. c) A braid for the
generation of a family of achiral knots. For any number of n, a reverse rotated palindrome (RRP) is obtained, indicated by the inversion center i.
d) This braid also generates achiral knots for any number n not divisible by 3.

Angewandte
ChemieReviews

&&&&Angew. Chem. Int. Ed. 2017, 56, 2 – 31 ! 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

These are not the final page numbers! ! !

Enumeration of knots by number of crossings was started by Tait in1890.
There are more than 350 millions of knots with at most 19 crossings.
[Picture from S.D.P. Fielden, D.A. Leigh, S.L. Woltering, Molecular knots. 2017]
[B. Burton, The Next 350 Million Knots, 2022.]
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Links and their diagrams
Link is an embedding of a finite number of disjoint copies of S1 in S3.

interlocking. The chemistry of the mechanical bond is
already well established and has been applied with
remarkable success to the design and synthesis of
catenanes,24,25 rotaxanes,26 molecular shuttles,27 and
switches,28 as well as MIMs-based artificial molecular
machines29 (AMMs), pioneered by Sauvage30 and one of
us,19 who were awarded the 2016 Nobel Prize in Chemis-
try conjointly with Feringa.31

The concept of chemical topology was introduced by
Frisch and Wasserman32 in 1961 to explain the phenome-
non of topological isomerism in which two molecules
have the same molecular formulas, yet their structures
cannot be interconverted by any kind of deformation.
Chemical topology21 is of fundamental importance in

distinguishing and describing the molecular structures of
MIMs. For example, the intrinsic distinction between cate-
nanes and rotaxanes is very clear when taking chemical
topology into consideration. A catenane is topologically
nontrivial since its molecular components cannot be
separated by any continuous deformationwithout break-
ing at least one participating covalent bond. A rotaxane,
on the one hand, is topologically trivial for the simple
reason that itsmolecular components can be separated—
in principle at least—by the slippage33–36 of the ring off its
dumbbell by its passing over one of the stoppers. In a
catenane, on the other hand, the mechanical bond is also
a topological bond, which is not the case in a rotaxane.
For this reason, we have advocated the use of the term
mechanical bond,18 first suggested by Frisch et al. in
1953.37

In mathematical topology (Figure 1), a knot is defined
as a closed loop embedded in three-dimensional (3D)
Euclidean space, whereas a link is a collection of rings
that are mechanically interlocked, one with another.
Prime knots refer to those that cannot be represented
as sums of other knots, in analogy with prime numbers,
while combinations of prime knots generate (Figure 1a)
composite knots. The definitions (Figure 1b) of prime and
composite links can be expressed in similar ways.
The Alexander–Briggs notation38 has been used to

classify different topologies. In this notation, a link or a
knot is denoted in the form xy

z—featured in red in Figure 1
and subsequent Figures for consistency—where x is
equal to the minimum number of nodes or crossings in
the projection of the topology, y is the number of com-
ponents (in a knot y = 1 and is usually omitted), and z
represents the order of the particular topology among its
peers with the same x and y descriptors.
Aesthetically appealing topologies have encouraged

chemists to express their counterparts in molecules. The
foremost challenge in the synthesis of molecules with
topologies lies in how to precisely control the entangle-
ment of the closed loops and the generation of crossover
points. Because of the innovative research on molecular
knots and links, pioneered by Sauvage et al.39–41 and Leigh
et al.,42,43 a new and independent research field—one we

have ventured to call molecular nanotopology44—is
emerging (Figure 2) out of the potpourri of chemical
topology, mechanical bonds, and MIMs such as links
(catenanes) and knots. In the case of molecular nanoto-
pology involving links and knots, not to mention inter-
woven frameworks, a mechanical bond is a fundamental
requirement for the formation of these topologically
nontrivial molecules, keeping in mind that the existence
of topology in links and knots does not lay claim to the
exclusive use of mechanical bonding, which is also pres-
ent, for examples, in rotaxanes and suitanes.
Given the recent developments21,42,43 and break-

throughs45–50 in molecular nanotopology,44 we believe
that a sea change is afoot and that molecular nanotopol-
ogy is waiting in the wings to be embraced by the wider
community of chemists and other scientists. It is timely to

Figure 1 | Graphical representations of several links and
knots in mathematical topology. In the Alexander–Briggs
notation, which is featured in red, a link or a knot is
denoted in the form xy

z, where x is equal to the minimum
number of crossings in the projection of a topology, y is
the number of components (in a knot y = 1 and is usually
omitted), and z represents the order of the given topolo-
gy among its peers with the same x and y descriptors.
(a) Topological isomerism in knots with 0, 3, 4, 5, 7, and 6
nodes or crossings, respectively. (b) Topological isomer-
ism in links consisting of two or three mechanically inter-
locked rings with 2, 4, 6, 6, 6, and 9 nodes/crossings,
respectively. The graphics were prepared using KnotPlot.

MINI REVIEW

DOI: 10.31635/ccschem.021.202100975
Citation: CCS Chem. 2021, 3, 1542–1572
Citation denotes calendar and volume year of first online publication.

Issue Assignment: Volume 3 (2021), Issue 7 1543

Links admitting diagrams with small number of crossings.

Two links are said to be equivalent if they are ambient isotopic.

[Picture form G.­H. Guo, Y. Jiao, Y. Feng, J.F.Stoddart, The Rise and Promise of Molecular Nanotopology. July 2021]
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Reidemeister moves for diagrams of knots and links

Theorem (K. Reidemeister, 1927)
Two links K and K′ in S3 are ambient isotopic if and only if a diagram of K can
be transformed into a diagram of K′ by a finite sequence of moves among
(I)–(III) and plane isotopy.

(I)

(II)

(III)

Vesnin (SIM, NSU, TSU) On Yamada polynomials August 17, 2024 7 / 41
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States of a knot diagram

Let K be a link. Let D be a diagram of K. Assume that D has n crossings.
For any crossing z ∈ D define local transformations of D: A­split and B­split:

A

A
B B

z

−→ A

A­split

B

B­split

After splitting in all crossings of D we get a state S that is a collection of
closed curves on a plane.
For any state S let a(S) be number of A­splits, b(S) number of B­splits, and
|S| number of connected components of S.
Observe that a(S) + b(S) = n and diagram D has 2n states.

Such (A,B)­labeling in a crossing point was used by Gauss’s student
Johann Benedict Listing in his book «Preliminary studies on topology», 1847.
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Example: a trefoil knot

Consider (A,B)­labelling for a diagram DT of the trefoil knot T:

A A
B

B
A

A
B B

A

A
BB

Labelling of DT. A state S of DT.

Define a «bracket» polynomial

⟨DK⟩ =
∑
S

Aa(S)Bb(S)d|S|,

where the sum is taken over all states of a diagram DK of a knot K.
For DT we have 23 states and

⟨DT⟩ = A3d2 + 3A2Bd+ 3AB2d2 + B3d3.

Vesnin (SIM, NSU, TSU) On Yamada polynomials August 17, 2024 9 / 41
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Jones polynomial of a link
To make ⟨DK⟩ invariant under Reidemeister moves suppose B = A−1 and
d = −(A2 + A−2). Then ⟨DK⟩ is called the Kauffman bracket polynomial.
Give an orientation to link K and define writhe number of DK by
w(DK) =

∑
c ε(c) where sum is taken over all crossings.

ε(c) = +1 ε(c) = −1

Theorem (L. Kauffman)
Let DK be a diagram of oriented link K ⊂ S3. Then Laurent polynomial

V(DK;A) = (−A3)−w(DK)
⟨DK⟩

(−A2 − A−2)

is an invariant of a link K under an ambient isotopy.

Denote t = A−4. Then VK(t) = V(K; t−1/4) ∈ Z[t±1/2] is the Jones polynomial.

Vaughan Jones was awarded the Fields medal in 1990.
Vesnin (SIM, NSU, TSU) On Yamada polynomials August 17, 2024 10 / 41
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Spatial graphs (knotted graphs)

Let G be a graph with finite set V of vertices and finite set E of edges.
Loops and multi­edges are admitted in G.

An embedding f : G → S3 is called a spatial embedding of G, and G = f(G) is
called a spatial G­graph.

If γ is a cycle in G then its spatial embedding f(γ) is a knot in S3.
If λ = α ∪ β is a couple of disjoint cycles in G then its spatial embedding f(λ)
is a 2­component link in S3.
Thus, the theory of spatial graphs is a natural extension of the knot theory.

We will work in the piecewise­linear category and graphs are considered to
be 1­dimensional finite topological complexes.
Spatial graphs G and G′ are said to be equivalent if there is an ambient
isotopy of S3 which transforms G into G′.
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Θ­graph and spatial Θ­graphs

Even if an (abstract) graph is simple combinatorially, its embedding to S3 can
be very complicated topologically.
Let Θ be a theta­graph and G be a spatial Θ­graph.

v1 v2

e1
e2

e3

For e1, e2 and e3, edges of a Θ, the images K1 = f(e2 ∪ e3), K2 = f(e1 ∪ e3),
and K3 = f(e1 ∪ e2) are said to be constitute knots of the spatial graph G.

Theorem (K. Wolcott, 1986)
For any three given knots K1, K2, and K3 there exists a spatial Θ­graph G
such that these knots are realized as constitute knots of G.
Moreover, knots K1, K2, and K3 do not determine spatial Θ­graph uniquely.

[Keith Wolcott, The knotting of Theta­curves and other graphs in S3 , Thesis, U. Iowa, 1986]
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Θ­graphs with at most 5 crossings in a diagram

� �
� �r r
Θ1

� �r r

Θ2


	r r
Θ3

rr
Θ4

r r� �
Θ5��rr

Θ6

� �r r
Θ7

rr
Θ8

r r
Θ9

r r
Θ10r r� �

Θ11

rr
Θ12

r r
Θ13

r r� �
Θ14

[J. Simon, A topological approach to the stereochemistry of nonrigid molecules, Graph theory and topology in chemistry, 1987.]

[H. Moriuchi, An enumeration of theta­curves with up to seven crossings, JKTR 2009, 18(2), 167­197.]
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Additional Reidemeister moves for spatial graphs

Theorem (L. Kauffman, S. Yamada, 1989)
Two spatial graphs G and G′ in S3 are ambient isotopic if and only if a diagram
of G can be transformed to a diagram of G′ by a finite sequence of moves
among (I)–(VI) and plane isotopy.

(IV)
. . . . . . . . .

(V) ...
...

...
...

...

(VI) ...
...

...
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1 Knots, Spatial Graphs, Constituent Knots, Reidemeister moves

2 Knots and Links in Spatial Complete Graphs

3 Polynomial Invariants of Spatial Graphs

4 Relations Between Yamada Polynomial and Jones Polynomial
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Existence of knots and links in a spatial complete graph

If a graph is “large enough” combinatorially, then any embedding is ”knotted”.
Let Kn be a complete graph with n vertices. A graph is complete if any two
vertices are connected by edge, so Kn has n(n−1)

2 edges.

Theorem (J. Conway, C. Gordon, 1983)
(1) Each embedding of K6 in S3 contains a pair of cycles which form an
unsplittable 2­component link.
(2) Each embedding of K7 in S3 contains a cycle which is a non­trivial knot.

A spatial graph G is said to be splittable if there exists a 2­sphere S in S3 \ G
which splits S3 into 3­balls B3

1 and B3
2 with both B3

1 ∩ G and B3
2 ∩ G nonempty.

Otherwise G is said to be unsplittable.
1 2

3

45

6

1 2

3

45

6

[J. Conway, C.McA. Gordon, Knots and links in spatial graphs, J. Graph Theory, 1983, 7, 445–453.]
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Complete graph K4 and its embeddings

Graph K4.

Seven cycles in K4.

Theorem (M. Yamamoto, 1990)
Let c1, . . . , c7 be the seven cycles in K4. For any ordered 7­tuple (K1, . . . ,K7)
of knots, there is a spatial embedding of K4, such that cycles (c1, . . . , c7) are
embedded as knots (K1, . . . ,K7).

[M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl., 1990, 36(3), 291–298.]
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Table of spatial K4­graphs with at most 4 crossings in a diagram

Ω1 Ω2 Ω3 Ω4 Ω5

Ω6 Ω7 Ω8 Ω9 Ω10

[J. Simon, A topological approach to the stereochemistry of nonrigid molecules, Graph theory and topology in chemistry, 1987.]
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States of a spatial graph diagram

Let G be a spatial graph. Let D be a diagram of G.

For any crossing z ∈ D we define three local transformations of D:
s+­split, s−­split, and s0­split:

z

−→

s+ s− s0

After splitting in all crossings of D we get a state that is a plane graph.
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Yamada polynomial H(G) of a graph

Let G = G(V,E) be a (combinatorial) graph, possibly with loops and multiply
edges, where V = V(G) is the set of vertices and E = E(G) is the set of
edges.
Denote the number of connected components by ω(G) and the 1­st Betti
number by

β(G) = |E(G)| − |V(G)|+ ω(G).

Definition
For a graph G define Laurent polynomial H(G;A) in A by

H(G;A) =
∑

F⊆E(G)

(−1)ω(G−F) (−A− 2− A−1)β(G−F),

where F passes over all subsets of E(G).

Here G− F is a graph with the vertex set V(G) and the edge set E(G)− F.
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Some properties of H(G)

Let G = (V,E) be a finite graph. For edge e ∈ E(G) denote by G− e a graph
obtained by deletion of e, and by G/e the graph, obtained by contraction of e.

• •eu v

• •u v •u = v
��	 @@R

The following properties of H(G) hold.
1◦. H(G) = H(G/e) + H(G− e). (The same as for the Tutte polynomial!)
2◦. If G and G′ be homeomorphic graphs, then H(G) = H(G′).
3◦. If G ∪G′ is a disjoint union of graphs, then H(G ∪G′) = H(G) · H(G′).
4◦. If G ·G′ is a union along one vertex, then H(G ·G′) = −H(G) · H(G′).
5◦. If G has a isthmus, then H(G) = 0.
6◦. Let Lq be the one­vertex graph with q loops, then

H(Lq) = (−1)q+1(A+ 1 + A−1)q.
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States and Yamada polynomial of a spatial graph

Assume that diagram D of a spatial graph G has n crossings. Let S be a state
of D, i.e., a plane graph, obtained by applying splits to all crossings of D.
Let U(D) be the set of all states of D. Obviously, |U(D)| = 3n.
Suppose that state S is obtained from D by applying m1(S) s+­splits, m2(S)
s−­splits, and so, by (n−m1(S)−m2(S)) s0­splits.

Definition
Yamada polynomial Y(D) of a spatial graph diagram D is a Laurent
polynomial in A, defined by

Y(D) = Y(D;A) =
∑

S∈U(D)

Am1(S)−m2(S)H(S;A).

For the empty graph we suppose Y(∅) = 1.
If diagram D of G has no crossings, then we get Y(D) = H(G;A).

[S. Yamada, An invariant of spatial graphs, J. Graph Theory, 1989, 13, 537–551.]
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Invariance of Y(D)

Maximal degree of a graph is the maximum of degres of its vertices,
max{deg(v)|v ∈ V(G)}.

Theorem (S. Yamada, 1989)
(1) If diagrams D and D′ are equivalent under generalized Reidemeister

moves (I) – (V), then Y(D) and Y(D′) are equal up to a multiplier (−A)k
for some integer k.

(2) Let D and D′ be diagrams of spatial graphs of maximal degree at most 3.
If diagrams D and D′ are equivalent under generalized Reidemeister
moves (I) – (VI), then Y(D) and Y(D′) are equal up to a multiplier (−A)k
for some integer k.

If D is a diagram of a spatial graph G we will denote Y(D) by Y(G).

[S. Yamada, An invariant of spatial graphs, J. Graph Theory, 1989, 13, 537–551.]
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Yamada polynomials of spatial K4­graphs with at most 4 crossings

Yamada polynomials of above pictured spatial K4­graphs Ω1, . . . ,Ω10 are
presented in the table.

Graph G Yamada polynomial Y(G)
Ω1 A3+2A+2A−1+A−3

Ω2 A8+A6+A5−A4+A3−2A2+A−1+A−1+A−2+A−3+A−4+A−5

Ω3 2A6+A4+A3−2A2−4−A−1−3A−2−A−3+A−7

Ω4 A8−A7+A6−A4+A3−2A2+A−2−A−2−A−3−A−4−A−6

Ω5 A8−A7+A6−A5−A4−2A2+A−1+2A−1+A−2+2A−3+A−4+2A−5+A−7

Ω6 A7−A6+A4+A2+3A+3A−1−A−2+A−3−A−4−2A−5+A−6−A−7+A−9

Ω7 −A8−A5+A4+A3+3A+3A−1+A−3+A−4−A−5−A−8

Ω8 A9−A8+2A6−A5+A4+2A3−A2+2A−2+A−1−A−2−A−3+2A−4+2A−7

Ω9 −A8+A7−A5+2A4+2A−1+2A−1−A−2+A−3+A−4−A−5+A−6+A−7−A−8+A−9

Ω10 A9−A8+A7−A5+A4+2A+2A−1+A−4−A−5+A−7−A−8+A−9

[A. Vesnin, A. Dobrynin, The Yamada polynomial for graphs, embedded knot­wise into three­dimensional space, Vychisl. Sistemy,

155 (1996) 37–86. (in Russian). An English translation is available at https://www.researchgate.net/publication/266336562.]
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Zeros of Yamada polynomials

Theorem (M. Li, F. Lei, F. Li, A. Vesnin, 2019)
The set of zeros of Yamada polynomial of all spatial graphs is dense in the
complex plane C.

The proof is constructive, the infinite family of spatial graphs with this property
is constructed.

[M. Li, F. Lei, F. Li, A. Vesnin, On the Yamada polynomial of spatial graphs obtained by edge replacements, J. of Knot Theory and

Ramifications, 2019, 27(9), 1842004.]

[M. Li, F. Lei, F. Li, A. Vesnin, Density of roots of the Yamada polynomial of spatial graphs, Proc. Steklov Institute of Mathematics,

2019, 305, 135–148.]
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1 Knots, Spatial Graphs, Constituent Knots, Reidemeister moves

2 Knots and Links in Spatial Complete Graphs

3 Polynomial Invariants of Spatial Graphs

4 Relations Between Yamada Polynomial and Jones Polynomial
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Jaeger polynomial and Yamada polynomial

F. Jaeger [1997] introduced a Laurent polynomial invariant of a spatial graph
G which can be calculated from its diagram.

We call this invariant Jaeger polynomial and denote it by J(G;A) ∈ Z[A±1].

Y. Huh [2024] established the following relation between Jaeger polynomial
and Yamada polynomial.

Lemma (Y. Huh, 2024)
Let G be a planar graph with vertices set V(G) and edges set E(G). Let D be
a diagram of a spatial embedding of G. Then

J(D;A) =
Y(D;A4)

−(A2 + A−2)|E(G)|−|V(G)|+1
.

We will use this Lemma as a definition of J(G;A) for G = K4.

[F. Jaeger, On some graph invariants related to the Kauffman polynomial, Progress in knot theory and related topics, 1997.]

[Y. Huh, Yamada polynomial and associated link of θ­curves, Discrete Mathematics, 2024, 347, paper number 113684]
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Spatial K4­graph and band diagram

Let G be a spatial embedding of K4, and D be a diagram of G. Taking bands
instead of edges we will get a band diagram which represents a
three­punctured disk S, where D is a spine of S.

a1·· ·
a2···

a3··· a4···a5···

a6
·· ·

Denote L = ∂S, then L is a link in S3 with four components.
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Seifert linking form

For an oriented surface S let x and y be closed curves on S. Let x+ denote
the result of pushing x a small amount into S3 \S along a positive normal to S.
The function

⟨[x], [y]⟩ : H1(S,Z)× H1(S,Z) → Z

defined by ⟨[x], [y]⟩ = lk(x+, y) is known as the Seifert form for S.

Theorem (KSWZ, 1993)
Let G0 be a planar embedding of a connected trivalent planar graph G.
Suppose G0 is prime.

(1) If the number of edges in G is at most 6, then for each G there exists a
unique (up to ambient isotopy) surface S(G) with zero Seifert form.

(2) If the number of edges in G is more than 6, then

(i) there exists a G with no S(G) of zero Seifert form;
(ii) if there is an S(G) of zero Seifert form, it is the unique such surface.

In this sense, spatial K4­graphs are the largest «good» case.
[L. Kauffman, J. Simon, K. Wolcott, P. Zhao, Invariants of theta­curves and other graphs in 3­space, Topology Appl., 1993]
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Surface with zero Seifert form

For i, j = 1, . . . , 6 we denote by wij the sum of signs over all crossings of ai
and aj, in particular, the sum over all self­crossings if j = i.

ε(c) = +1 ε(c) = −1

[KSWZ]: To obtain a surface with zero Seifert form we start from a band
diagram and apply additional twists with half­ntegers n1, . . . , n6 such that:

n1 = −w11 +
1
2 (−w23 − w25 + w21 + w13 + w15 + w36 − w16 + w56);

n2 = −w22 +
1
2 (−w24 + w14 + w46 + w23 − w13 − w36 + w12 + w26);

n3 = −w33 +
1
2 (w34 − w14 + w45 + w23 + w25 − w12 + w13 − w35);

n4 = −w44 +
1
2 (−w24 + w34 − w46 + w36 − w26 − w45 − w25 + w35);

n5 = −w55 +
1
2 (−w35 + w15 − w36 + w16 − w56 − w34 + w14 − w45);

n6 = −w66 +
1
2 (−w16 + w26 + w25 − w15 − w56 + w24 − w14 − w46).
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A link associated to diagram D

Taking above half­integers «twisting parameters» n1, . . . , n6 we modify
surface S by adding ni­twists on bands.

·· ·
n1

···
n2

···
n3

···

n4

···

n5

·· ·
n6

1 = −1 =

Let L = L(n1, . . . , n6) be a link obtained by applying ni full twists as presented.

A link L = ∂S is said to be an associated link to diagram D.
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Normalized Jaeger polynomial

Let D be a diagram of a spatial K4­graph G.
Let n1, . . . , n6 be twisting parameters for D.
Define a normalized Jaeger polynomial;

J̃(D) = (−A)8(n1+n2+n3+n4+n5+n6) J(D).

Theorem 1 [Oshmarina, V., 2024]
Let G be an embedding of K4 in S3, and D a diagram of G. Then J̃(D) is an
invariant of G.
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Knots and theta­subgraphs in K4

Consider embedding G of K4 in S3.

Then cycles of K4 are embedded as knots K1, . . . ,K7

and theta­subgraphs of K4 are embedded as spatial graphs Θ1, . . . ,Θ6.
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Normalized Jaeger polynomials and Jones polynomial

For a link L ⊂ S3 denote its Jones polynomial by V(L) ∈ Z[A±1].

Theorem 2 [Oshmarina, V., 2024]
Let G be an embedding of K4 in S3. Denote

by L the 4­component link associated to a diagram of G,

by K1, . . . ,K7 knots which are embeddings of cycles of K4, and

by Θ1, . . . ,Θ6 spatial graphs which are embeddings of theta­subgraphs.

Then

J̃(G) = V(L) + 1

φ

6∑
i=1

J̃(Θi)−
1

φ2

7∑
j=1

J̃(Kj) +
1

φ3
,

where φ = A2 + A−2.

Vesnin (SIM, NSU, TSU) On Yamada polynomials August 17, 2024 35 / 41



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Normalized Jaeger polynomial and Jones polynomials

Corollary (Oshmarina, V., 2024)
Let G be an embedding of K4 in S3. Denote

by L the associated 4­component link to a diagram of G,

by Li, i = 1, . . . , 6 associated 3­component links to Θ­subgraphs of G,

by K(2)
j , j = 1, . . . , 7, 2­component links which are 2­parallel to constitute

knots of G with some additional full­twists.

Then

J̃(G) = V(L) + 1

φ

6∑
i=1

V(Li) +
2

φ2

7∑
j=1

V(K(2)
j ) +

6

φ3
.

where φ = A2 + A−2.
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An example for Theorem 2 (part I)

Spatial K4­graph Ω7.

a2 a6
a1

a3 a5

a4

Spatial K4­graph Ω7.

The normalized Jeager polynomial:
J̃(Ω7) =

−1

φ3
(−A32 − A20 + A16 + A12 + 3A4 + 3A−4 + A−12 − A−20 − A−32),

where φ = A2 + A−2.

Twisting parameters are n1 = −1, n4 = 1, and ni = 0 for i = 2, 3, 5, 6.
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An example for Theorem 2 (part II)
The associated link L to the spatial K4­graph Ω7:

Jones polynomial V(L) = A30 − 2A26 + A22 + A18 − 3A14 + 3A10 − 3A6

−2A2 − 2A−2 − 3A−6 + 3A−10 − 3A−14 + A−18 + A−22 − 2A−26 + A−30.

The complement S3 \ L admits a complete Riemann metric of curvature
−1. The number vol(S3 \ L) = 18.9807764741 . . . is an invariant of Ω7

under an ambient isotopy.
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An example for Theorem 2 (part III)

Six theta­subgraphs Θ1, . . . ,Θ6.

Theta­subgraph Θ1. Theta­subgraph Θ4. Theta­subgraphs Θ2,Θ3,Θ5,Θ6.

J̃(Θ1) =
1

φ2
(−A36 + A28 + A20 + A16 + A8 + 1 + A−12 + A−24)

J̃(Θ4) =
1

φ2
(A24 + A12 + 1 + A−8 + A−16 + A−20 + A−28 − A−36)

J̃(Θi) =
1

φ2
(A8 + A4 + 2 + A−4 + A−8) for i ∈ {2, 3, 5, 6}.
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An example for Theorem 2 (part IV)

Seven constituent knot K1, . . . ,K7.

The knot K1 formed by set of edges {2, 3, 5, 6} is the figure­eight knot 41,
other knots K2, . . . ,K7 are trivial knots. Therefore,

J̃(K1) = −A26 + A22 − A2 − A−2 + A−22 − A−26 +
1

φ
.

and

J̃(K2) = J̃(K3) = J̃(K4) = J̃(K5) = J̃(K6) = J̃(K7) = −A2 − A−2 +
1

φ
.

Thus, the following relation holds for Ω = Ω7:

J̃(Ω)− V(L) = 1

φ

6∑
i=1

J̃(Θi)−
1

φ2

7∑
j=1

J̃(Kj) +
1

φ3
.
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Thank you for your attention!
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