Flag-transitive 3-design from the action of $\mathrm{PSL}(2,q)$ on the projective line

Akihiro Munemasa

Tohoku University

G2C2, Hebei Normal University, August 16, 2024

The action of $\mathrm{PSL}(2,q)$ on $\mathrm{PG}(1,q)$

The projective special linear group PSL(2,q) acts as linear fractional transformations:

$$egin{bmatrix} a & b \ c & d \end{bmatrix}: z\mapsto rac{az+b}{cz+d} \quad (z\in \mathbb{F}_q\cup\{\infty\}),$$

where ad - bc = 1.

The purpose of this talk is to give a family of nice orbits consisting of (q-1)/e-element subset forming 3-designs.

More precisely,

- e is a positive integer with $e \geq 2$,
- q is a prime power with $q \equiv 1 \pmod{e}$,
- a representative for the orbit is the set of *e*-th powers in \mathbb{F}_{q}^{\times} .
- ... (additional conditions).

Let Ω be a finite set, and denote by $\binom{\Omega}{k}$ the family of *k*-element subsets of Ω .

Definition

A pair (Ω, \mathcal{B}) is called a *t*-design if $\mathcal{B} \subseteq {\Omega \choose k}$ and, any *t* points of Ω is contained in a constant number of members of \mathcal{B} .

To avoid triviality, we assume $|\Omega| > k > t > 0$. Members of ${\cal B}$ are often called blocks.

The constant number in the definition is usually denoted by λ , and we say \mathcal{B} is a t- (v, k, λ) design, where $v = |\Omega|$.

Definition

A permutation group G on a finite set Ω is said to be *t*-transitive if G acts transitively on the set of ordered *t*-tuples of distinct elements of Ω .

Definition

A permutation group G is said to be t-homogeneous if G acts transitively on $\binom{\Omega}{t}$ (of unordered t-tuples, i.e., t-element subsets).

Clearly, *t*-transitive \implies *t*-homogeneous.

If G is a *t*-homogeneous permutation group on Ω , and $B \in {\Omega \choose k}$ with $|\Omega| > k > t$, then $(\Omega, G \cdot B)$ is a *t*-design, where $G \cdot B$ is the orbit of B under G, If the set of blocks \mathcal{B} is of the form $G \cdot B$, then the design (Ω, \mathcal{B}) is called block-transitive, and a representative B is called a starter of the design (Ω, \mathcal{B}) under G.

$\mathrm{PGL}(2,q)$ acting on $\mathbb{F}_q \cup \{\infty\}$

 $\mathrm{PGL}(2,q)$ acts on $\mathbb{F}_q \cup \{\infty\}$ in terms of linear fractional transformation

$$egin{bmatrix} a & b \ c & d \end{bmatrix} \colon z\mapsto rac{az+b}{cz+d} \quad (z\in \mathbb{F}_q\cup\{\infty\}).$$

This action is 3-transitive: $(\infty, 0, 1) \mapsto$ any triple of distinct elements of $\mathbb{F}_q \cup \{\infty\}$.

Any $B \in \binom{\mathbb{F}_q \cup \{\infty\}}{k}$, k > 3, is a starter of a block-transitive design under $\mathrm{PGL}(2,q)$.

How about PSL(2, q)?

- $\operatorname{PGL}(2,q)$ is 3-transitive, hence 3-homogeneous on $\mathbb{F}_q \cup \{\infty\}$.
- If $q = 2^m$, then $\mathrm{PSL}(2,q) = \mathrm{PGL}(2,q)$ is 3-transitive and hence 3-homogeneous.
- If q is odd, then $|\operatorname{PGL}(2,q):\operatorname{PSL}(2,q)|=2.$
 - If $q \equiv -1 \pmod{4}$, then $\mathrm{PSL}(2,q)$ is 3-homogeneous.
 - If $q \equiv 1 \pmod{4}$, then PSL(2,q) is not 3-homogeneous.

$q\equiv 1 \pmod{4}$

Since $\mathrm{PGL}(2,q) \supsetneq = \mathrm{PSL}(2,q)$,

$$\mathrm{PGL}(2,q)\cdot B\supseteq \mathrm{PSL}(2,q)\cdot B \quad ext{for } B\in \binom{\mathbb{F}_q\cup\{\infty\}}{k}.$$

It can happen that

$$PGL(2,q) \cdot B = PSL(2,q) \cdot B$$

for some B, and in this case, $\mathrm{PGL}(2,q) \cdot B = \mathrm{PSL}(2,q) \cdot B$ is a 3-design.

The converse, however,

 $\mathrm{PSL}(2,q) \cdot B$ is a 3-design $\implies \mathrm{PGL}(2,q) \cdot B = \mathrm{PSL}(2,q) \cdot B$

is not true.

Akihiro Munemasa

Bonnecaze and Solé (2021)

"The extended binary quadratic residue code of length 42 holds a 3-design." (Neither transitivity nor Assmus–Mattson theorem can provide a reason)

Consider $\chi \colon \mathbb{F}_q \to \{0, \pm 1\}$ defined by $\chi(a) = \begin{cases} 0 & \text{if } a = 0, \\ 1 & \text{if } a \in (\mathbb{F}_q^{\times})^2, \\ -1 & \text{otherwise.} \end{cases}$

(known as the Legendre symbol, quadratic residue character).

Let q=41. The linear span over \mathbb{F}_2 of the rows of the q imes q matrix $rac{1}{2}((\chi(a-b)+1)_{a,b\in\mathbb{F}_q}-I)$

is the binary quadratic residue code of length 41, denoted QR_{41} .

Bonnecaze and Solé (2021)

Then $QR_{41} \subseteq \mathbb{F}_2^{41}$, $\dim QR_{41} = 21$.

The extended binary quadratic residue code XQR_{42} of length 42 is obtained from QR_{41} by adding the "parity check coordinate." Then $XQR_{42} \subseteq \mathbb{F}_2^{42}$, dim $XQR_{42} = 21$.

For
$$x\in \mathbb{F}_2^n$$
, $ext{supp}(x)=\{i\mid 1\leq i\leq n,\; x_i=1\},\ ext{wt}(x)=|\operatorname{supp}(x)|.$ Let $\Omega=\{1,2,\ldots,42\},$

Then (Ω, \mathcal{B}) is a 3-(42, 10, 18) design (verified by computer). WHY?

 $\mathcal{B} = \{ \sup(x) \mid x \in XQR_{42}, wt(x) = 10 \}.$

Awada, Miezaki, M., Nakasora (2024)

Let

$$egin{aligned} \Omega &= \{1,2,\ldots,42\},\ \mathcal{B} &= \{\mathrm{supp}(x) \mid x \in XQR_{42}, \ \mathrm{wt}(x) = oldsymbol{k}\}. \end{aligned}$$

Then (Ω, \mathcal{B}) is a 3-design only if $\mathbf{k} = 10, 32$ (verified by computer).

Aut $XQR_{42} = PSL(2, 41)$ acts block-transitively.

Let

$$ilde{\mathcal{B}} = \{ \operatorname{supp}(x) \mid x \in XQR_{42} \cup XQR_{42}^{\perp}, \ \operatorname{wt}(x) = 10 \}.$$

Then $(\Omega, \tilde{\mathcal{B}})$ is a 3-design (this fact can be theoretically generalized, but $|\tilde{\mathcal{B}}| = 2|\mathcal{B}|$. In fact, $\tilde{\mathcal{B}}$ is a PGL(2, 41)-orbit.)

3-Designs from PSL(2, q)

$$egin{aligned} \Omega &= \{1, 2, \dots, 42\}, \ \mathcal{B} &= \{ \mathrm{supp}(x) \mid x \in XQR_{42}, \ \mathrm{wt}(x) = \mathbf{10} \}. \end{aligned}$$

Then (Ω, \mathcal{B}) is a 3-design (Bonnecaze and Solé, 2021).

Aut $XQR_{42} = \mathrm{PSL}(2, 41)$ acts block-transitively. $\mathcal{B} = \mathrm{PSL}(2, 41) \cdot B \subsetneq \mathrm{PGL}(2, 41) \cdot B.$

In fact, we may identify Ω with $\mathbb{F}_{41}\cup\{\infty\},$ and

$$B = \{1, eta, eta^2, \dots, eta^9\},$$

where β is a primitive 10-th root of 1 in \mathbb{F}_{41} . Equivalently, B is the set of quartic (4th power) residues in \mathbb{F}_{41} , i.e.,

$$B=\langleeta
angle, \ \ \mathbb{F}_{41}^{ imes}=\langlelpha
angle, \ \ eta=lpha^4.$$

$G = \mathrm{PSL}(2,q) \text{, } q \equiv 1 \pmod{4}$

For some choice of B, $(\mathbb{F}_q \cup \{\infty\}, G \cdot B)$ can happen to be a 3-design.

Theorem (Keranen–Kreher–Shiue, 2003)

Suppose $q \equiv 5$ or 13 (mod 24). Let $B = \{\infty, 0, 1, -1\}$ $\subseteq \mathbb{F}_q \cup \{\infty\}$. Then B is a starter of a block-transitive 3-(q + 1, 4, 3) design under G.

Theorem (Li–Deng–Zhang, 2018)

Suppose $q \equiv 1 \pmod{20}$. Let $B = \langle \alpha^{(q-1)/5} \rangle \subseteq \mathbb{F}_q^{\times} = \langle \alpha \rangle$. Then *B* is a starter of a block-transitive 3-(q+1, 5, 3) design under *G*, if and only if there exists $\theta \in \mathbb{F}_q^{\times}$ such that $\chi(\theta) = -1$ and $\theta^2 - 4\theta - 1 = 0$.

No systematic work on $B \subseteq \mathbb{F}_q \cup \{\infty\}$ with |B| > 5.

Akihiro Munemasa

3-Designs from PSL(2, q)

Let q be a prime power with $q \equiv 1 \pmod{4}$, and let e|q-1. Let

$$egin{aligned} \mathbb{F}_q^{ imes} &= \langle lpha
angle, \ B &= \langle lpha^e
angle, \ G &= \mathrm{PSL}(2,q) \end{aligned}$$

Regarding $B \subseteq \mathbb{F}_q \cup \{\infty\}$, when is $(\mathbb{F}_q \cup \{\infty\}, G \cdot B)$ a 3-design?

- Bonnecaze–Solé, 2021: q = 41, e = 4.
- Li–Deng–Zhang, 2018: $q \equiv 1 \pmod{20}$, e = (q-1)/5, under some condition (which is satisfied for q = 41).

$\mathrm{PSL}(2,q)$ is not 3-homogeneous, but...

Assume $q \equiv 1 \pmod{4}$.

There are only two orbits on $\binom{\mathbb{F}q\cup\{\infty\}}{3}$ under $\mathrm{PSL}(2,q),$ with representatives

$$\{\infty,0,1\},\{\infty,0,lpha\},$$

where $\mathbb{F}_q^{ imes} = \langle lpha
angle.$

A $\mathrm{PSL}(2,q)$ -orbit $\mathcal{B}\subseteq \binom{\mathbb{F}_q\cup\{\infty\}}{k}$ is the set of blocks of a 3-design if and only if

$$|\{B\in {\boldsymbol{\mathcal{B}}}\mid \{\infty,0,1\}\subseteq B\}|=|\{B\in {\boldsymbol{\mathcal{B}}}\mid \{\infty,0,\alpha\}\subseteq B\}|.$$

Further simplification is as follows.

Let
$$q\equiv 1 \pmod{4}$$
, $G=\mathrm{PSL}(2,q)$. Then $\binom{\mathbb{F}_q\cup\{\infty\}}{3}=\mathcal{O}_+\cup\mathcal{O}_-$ (disjoint),

where

$$\mathcal{O}_+ = G \cdot \{\infty, 0, 1\}, \qquad \mathcal{O}_- = G \cdot \{\infty, 0, \alpha\}.$$

Lemma (Tonchev, 1988)

Let $B \subseteq \mathbb{F}_q \cup \{\infty\}$ with |B| > 3. Then B is a starter of a block-transitive 3-design under G if and only if

$$\left| inom{B}{3} \cap \mathcal{O}_+
ight| = \left| inom{B}{3} \cap \mathcal{O}_-
ight|.$$

Moreover

$$inom{\mathbb{F}_q^{ imes}}{3}\cap\mathcal{O}_{\pm}=\{\{a,b,c\}\mid \chi((a-b)(b-c)(c-a))=\pm1\}.$$

Akihiro Munemasa

Theorem (Bonnecaze–Solé, 2021, reformulated)

Let q = 41, G = PSL(2, q). Let $B = \langle \alpha^4 \rangle \subseteq \mathbb{F}_q^{\times} = \langle \alpha \rangle$. Then B is a starter of a block-transitive 3-design under G.

The proof amounts to showing

$$egin{pmatrix} B \ 3 \end{pmatrix} \cap \mathcal{O}_+ igg| = igg| inom{B}{3} \cap \mathcal{O}_- igg| \, .$$

This can be verified directly (by hand, not by computer):

$$B = \langle 6^4 \rangle = \{1, 25, 10, 4, 18, 40, 16, 31, 37, 23\} \subseteq \mathbb{F}_{41}^{\times} = \langle 6 \rangle.$$

$$\begin{array}{l} \{1, 25, 10\} \in \mathcal{O}_+ \text{ since } \chi((1-25)(25-10)(10-1)) = 1, \\ \{1, 25, 4\} \in \mathcal{O}_+ \text{ since } \chi((1-25)(25-4)(4-1)) = 1, \\ \text{and so on: } \binom{10}{3} = 120 \text{ times.} \end{array}$$

Akihiro Munemasa

Theorem (Bonnecaze–Solé, 2021, reformulated)

Let q = 41, G = PSL(2, q). Let $B = \langle \alpha^4 \rangle \subseteq \mathbb{F}_q^{\times} = \langle \alpha \rangle$. Then B is a starter of a block-transitive 3-design under G.

Bonnecaze-Solé did not cite:

Theorem (Li–Deng–Zhang, 2018)

Suppose $q \equiv 1 \pmod{20}$. Let $B = \langle \alpha^{(q-1)/5} \rangle \subseteq \mathbb{F}_q^{\times} = \langle \alpha \rangle$. Then *B* is a starter of a block-transitive 3-(q+1,5,3) design under PSL(2, q), if and only if there exists $\theta \in \mathbb{F}_q^{\times}$ such that $\chi(\theta) = -1$ and $\theta^2 - 4\theta - 1 = 0$.

For q = 41,

the former theorem says $B = \langle \alpha^4 \rangle$ is a starter of size |B| = 10, the latter theorem says $B = \langle \alpha^8 \rangle$ is a starter of size |B| = 5. Which prime power q satisfies the condition of Li–Deng–Zhang?

3-Designs from PSL(2, q)

The sequence of primes

 $41, 61, 241, 281, 421, 601, 641, \ldots$

satisfying the condition of Li–Deng–Zhang:

$$\exists \theta \in \mathbb{F}_p^{ imes}, \; \chi(\theta) = -1, \; \theta^2 - 4\theta - 1 = 0$$
 (LDZ)

coincide with OEIS A325072: Prime numbers $p\equiv 1 \pmod{20}$ with

$$p
eq x^2 + 20y^2, \; x^2 + 100y^2.$$

Theorem

Let q be a prime power with $q \equiv 1 \pmod{20}$, let $\mathbb{F}_q^{\times} = \langle \alpha \rangle$ and $\beta = \alpha^{(q-1)/10}$. Let χ denote the quadratic residue character of \mathbb{F}_q^{\times} . Then the following are equivalent:

 $B = \langle \beta \rangle$ is a starter of a 3-design under PSL(2, q). (BS) (LDZ1) $B = \langle \beta^2 \rangle$ is a starter of a 3-design under PSL(2, q). (LDZ2) $\exists \theta \in \mathbb{F}_a^{\times}$ such that $\chi(\theta) = -1$ and $\theta^2 - 4\theta - 1 = 0$. (M) $\chi(\beta - 1) = -1$. (OEIS) q is an odd power of a prime which cannot be represented in the form $x^2 + 20y^2$ or $x^2 + 100y^2$. where x, y are positive integers. Moreover, if one of the equivalent conditions is satisfied, then $B = \langle \beta \rangle$ is a starter of a flag-transitive 3-design under PSL(2, a).

flag-transitive \iff block-transitive & block stabilizer is transitive on the set of points of the block.

Akihiro Munemasa

OEIS A325072 : 41, 61, 241, 281, 421, ...

This is the sequence of primes p with $p \equiv 1 \pmod{20}$ satisfying one of the following equivalent conditions:

 $\begin{array}{ll} (\mathsf{LDZ2}) & \exists \theta \in \mathbb{F}_p^\times \text{ such that } \chi(\theta) = -1 \text{ and } \theta^2 - 4\theta - 1 = 0. \\ (\mathsf{M}) & \chi(\beta - 1) = -1, \text{where } \beta \in \mathbb{F}_p \text{ is a primitive 10-th} \\ & \text{ root of 1.} \end{array}$

- (OEIS1) p cannot be represented in the form $x^2 + 20y^2$.
- (OEIS2) p cannot be represented in the form $x^2 + 100y^2$.
 - (H) 5 is not a quartic residue in \mathbb{F}_p .

Brink (2009) showed (OEIS1) \iff (OEIS2). Hasse (1930) showed (OEIS2) \iff (H). Showing (LDZ2) \iff (M) \iff (H) is elementary. Let q be a prime power with $q \equiv 1 \pmod{20}$, let $\mathbb{F}_q^{\times} = \langle \alpha \rangle$ and $\beta = \alpha^{(q-1)/10}$. Let χ denote the quadratic residue character of \mathbb{F}_q^{\times} .

(M)
$$\chi(\beta - 1) = -1$$
.
(BS) $B = \langle \beta \rangle$ is a starter of a 3-design under $\mathrm{PSL}(2,q)$.

Sketch of Proof (M) \implies (BS).

We need to show

$$egin{array}{c} B \ 3 \end{pmatrix} \cap \mathcal{O}_+ igg| = 60 = igg| inom{B}{3} \cap \mathcal{O}_- igg|,$$

where $B = \{1, \beta, \beta^2, \dots, \beta^9\}$. Recall

$$inom{\mathbb{F}_q^{ imes}}{3}\cap\mathcal{O}_{\pm}=\{\{a,b,c\}\mid \chi((a-b)(b-c)(c-a))=\pm1\}.$$

$$B = \{1, eta, eta^2, \dots, eta^9\}$$
, where $eta = lpha^{(q-1)/10}$. We need to show $\left| inom{B}{3} \cap \mathcal{O}_+
ight| = 60 = \left| inom{B}{3} \cap \mathcal{O}_-
ight|.$

Write

$$\chi(T)=\chi((a-b)(b-c)(c-a)) \quad (T=\{a,b,c\}\in inom{B}{3}inom{}).$$
 Then for $T\in inom{B}{3}$,

$$T\in \mathcal{O}_+\iff \chi(T)=+1.$$

Again $\binom{|B|}{3} = 120$ times? No, since (q-1)/10 is even, we have $\chi(\beta) = 1$. This means

$$\chi(eta T)=\chi(eta)^3\chi(T)=\chi(T),$$

so $\chi(T)$ is constant on each orbit of $\langle eta
angle.$

Enough to do it for 12 times only.

$$\left|egin{pmatrix} B \ 3 \end{pmatrix} \cap \mathcal{O}_+
ight| = 60 = \left|egin{pmatrix} B \ 3 \end{pmatrix} \cap \mathcal{O}_-
ight|.$$

 $\binom{B}{3}$ is decomposed into 12 orbits under $\langle \beta \rangle$:

$$\begin{array}{ll} T_1 = \langle \beta \rangle \cdot \{1, \beta, \beta^2\} & T_7 = \langle \beta \rangle \cdot \{1, \beta, \beta^6\} \\ T_2 = \langle \beta \rangle \cdot \{1, \beta, \beta^3\} & T_8 = \langle \beta \rangle \cdot \{1, \beta^2, \beta^4\} \\ T_3 = \langle \beta \rangle \cdot \{1, \beta^2, \beta^3\} & T_9 = \langle \beta \rangle \cdot \{1, \beta^2, \beta^5\} \\ T_4 = \langle \beta \rangle \cdot \{1, \beta, \beta^4\} & T_{10} = \langle \beta \rangle \cdot \{1, \beta^3, \beta^5\} \\ T_5 = \langle \beta \rangle \cdot \{1, \beta^3, \beta^4\} & T_{11} = \langle \beta \rangle \cdot \{1, \beta^2, \beta^6\} \\ T_6 = \langle \beta \rangle \cdot \{1, \beta, \beta^5\} & T_{12} = \langle \beta \rangle \cdot \{1, \beta^3, \beta^6\} \end{array}$$

$$\chi(T_1) := \chi((1-eta)(eta-eta^2)(eta^2-1)) =?$$

 $\chi(T_2) := \chi((1-eta)(eta-eta^3)(eta^3-1)) =?$

not computable each, but since $\beta^5=-1$,

$$rac{\chi(T_1)}{\chi(T_2)}=rac{\chi((1-eta)(eta-eta^2)(eta^2-1))}{\chi((1-eta)(eta-eta^3)(eta^3-1))}=1.$$

Akihiro Munemas

3-Designs from PSL(2, q)

$$egin{aligned} T_1 &= \langle eta
angle \cdot \{1,eta,eta^2\} & \cdots \ T_2 &= \langle eta
angle \cdot \{1,eta,eta^3\} & \cdots \ \cdots & T_{12} &= \langle eta
angle \cdot \{1,eta^3,eta^6\} \end{aligned}$$

Since $\chi(T_1)=\chi(T_2)$, we have $T_1\subseteq \mathcal{O}_+\iff T_2\subseteq \mathcal{O}_+.$

In fact, using (M): $\chi(eta-1)=-1$, one of the following holds:

$$igcup_{i\in\{1,2,3,6,7,11\}} T_i \subseteq \mathcal{O}_\pm ext{ and } igcup_{i\in\{4,5,8,9,10,12\}} T_i \subseteq \mathcal{O}_\mp, ext{ or } \ igcup_{i\in\{1,2,3,9,10,11\}} T_i \subseteq \mathcal{O}_\pm ext{ and } igcup_{i\in\{4,5,6,7,8,12\}} T_i \subseteq \mathcal{O}_\mp,$$

In both cases,

$$egin{array}{c} B \ 3 \end{pmatrix} \cap \mathcal{O}_+ igg| = 60 = igg| inom{B}{3} \cap \mathcal{O}_- igg| \, .$$

This completes the proof of $(M) \Longrightarrow (BS)$.

Theorem (Bonnecaze–Solé, 2021, reformulated)

Let q = 41, G = PSL(2, q). Let $B = \langle \alpha^4 \rangle \subseteq \mathbb{F}_q^{\times} = \langle \alpha \rangle$. Then B is a starter of a block-transitive 3-design under G.

is generalized.

The prime power q can be an odd power of a prime in OEIS A325072 (and taking $B = \langle \alpha^{(q-1)/10} \rangle$).

Thank you very much for your attention!