Flag-transitive 3-design from the action of PSL(2,q) on the projective line

Akihiro Munemasa Tohoku University munemasa@tohoku.ac.jp

Let q be a prime power. It is well-known that PSL(2,q) acts on the projective line $PG(1,q) = \mathbb{F}_q \cup \{\infty\}$ via linear fractional transformations:

$$f(z) = \frac{az+b}{cz+d}$$
, where $z \in \mathbb{F}_q \cup \{\infty\}$, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{PSL}(2,q)$.

If $q \equiv 1 \pmod{4}$, then there are exactly two PSL(2, q)-orbits \mathcal{O}_+ and \mathcal{O}_- on 3-element subsets of $\mathbb{F}_q \cup \{\infty\}$, with representatives $T_+ = \{\infty, 0, 1\}$ and $T_- = \{\infty, 0, \alpha\}$, respectively, where α is a primitive element of \mathbb{F}_q .

Bonnecaze and Solé [1] found that the extended quadratic residue code of length 42 supports a (seemingly sporadic) 3-(42, 10, 18) design. It turns out that this design has PSL(2, 41) as a flag-transitive automorphism group, and has the multiplicative subgroup of 10th roots of unity in \mathbb{F}_{41} as a starter block.

The purpose of this talk is to show that this 3-(42, 10, 18) design is the first one in the family of flag-transitive 3-(q+1, 10, 18) designs, where q is an odd power of a prime in the sequence A325072 in OEIS:

$$41, 61, 241, 281, 421, 601, 641, \ldots$$

This sequence consists of primes p satisfying $p \equiv 1 \pmod{20}$ and one of the following equivalent conditions:

- (i) there exists $\theta \in \mathbb{F}_p^{\times} \setminus (\mathbb{F}_p^{\times})^2$ such that $\theta^2 4\theta 1 = 0$,
- (ii) $p \neq x^2 + 20y^2$ for any integers x, y,
- (iii) $p \neq x^2 + 100y^2$ for any integers x, y,
- (iv) 5 is a not a quartic residue in \mathbb{F}_p .

Li, Deng and Zhang [2], show that if p satisfies (i) above, then the orbit of $\{1, \beta, \beta^2, \beta^3, \beta^4\}$ under PSL(2, p) is a flag-transitive 3-(p+1, 5, 3) design. Moreover, they showed that p can be a prime power, not necessarily a prime, as long as condition (i) is satisfied.

Here is our main result.

Theorem 1 Suppose that p is a prime with $p \equiv 1 \pmod{20}$ satisfying one of the equivalent conditions (i)-(iv) above, and let α be a primitive 10th root of unity in \mathbb{F}_p . If q is an odd power of p, then the orbit of $\{1, \beta, \beta^2, \ldots, \beta^9\}$ under PSL(2, q) is a flag-transitive 3-(q + 1, 10, 18) design.

References

- A. Bonnecaze and P. Solé. The extended binary quadratic residue code of length 42 holds a 3-design. J. Combin. Des., 29 (2021) 528–532.
- [2] Weixia Li, Dameng Deng, and Guangjun Zhang, Simple 3-(q + 1, 5, 3) designs admitting an automorphism group PSL(2, q) with $q \equiv 1 \pmod{4}$. Ars Combin., **136** (2018) 97–108.