Flag-transitive 3-design from the action of $\operatorname{PSL}(2, q)$ on the projective line

Akihiro Munemasa
Tohoku University
munemasa@tohoku.ac.jp

Let q be a prime power. It is well-known that $\operatorname{PSL}(2, q)$ acts on the projective line $\operatorname{PG}(1, q)=\mathbb{F}_{q} \cup\{\infty\}$ via linear fractional transformations:

$$
f(z)=\frac{a z+b}{c z+d}, \quad \text { where } z \in \mathbb{F}_{q} \cup\{\infty\},\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{PSL}(2, q)
$$

If $q \equiv 1(\bmod 4)$, then there are exactly two $\operatorname{PSL}(2, q)$-orbits \mathcal{O}_{+}and \mathcal{O}_{-}on 3 -element subsets of $\mathbb{F}_{q} \cup\{\infty\}$, with representatives $T_{+}=\{\infty, 0,1\}$ and $T_{-}=\{\infty, 0, \alpha\}$, respectively, where α is a primitive element of \mathbb{F}_{q}.

Bonnecaze and Solé [1] found that the extended quadratic residue code of length 42 supports a (seemingly sporadic) 3-($42,10,18)$ design. It turns out that this design has PSL $(2,41)$ as a flag-transitive automorphism group, and has the multiplicative subgroup of 10 th roots of unity in \mathbb{F}_{41} as a starter block.

The purpose of this talk is to show that this $3-(42,10,18)$ design is the first one in the family of flag-transitive $3-(q+1,10,18)$ designs, where q is an odd power of a prime in the sequence A325072 in OEIS:

$$
41,61,241,281,421,601,641, \ldots
$$

This sequence consists of primes p satisfying $p \equiv 1(\bmod 20)$ and one of the following equivalent conditions:
(i) there exists $\theta \in \mathbb{F}_{p}^{\times} \backslash\left(\mathbb{F}_{p}^{\times}\right)^{2}$ such that $\theta^{2}-4 \theta-1=0$,
(ii) $p \neq x^{2}+20 y^{2}$ for any integers x, y,
(iii) $p \neq x^{2}+100 y^{2}$ for any integers x, y,
(iv) 5 is a not a quartic residue in \mathbb{F}_{p}.

Li, Deng and Zhang [2], show that if p satisfies (i) above, then the orbit of $\left\{1, \beta, \beta^{2}, \beta^{3}, \beta^{4}\right\}$ under $\operatorname{PSL}(2, p)$ is a flag-transitive $3-(p+1,5,3)$ design. Moreover, they showed that p can be a prime power, not necessarily a prime, as long as condition (i) is satisfied.

Here is our main result.
Theorem 1 Suppose that p is a prime with $p \equiv 1(\bmod 20)$ satisfying one of the equivalent conditions (i)-(iv) above, and let α be a primitive 10 th root of unity in \mathbb{F}_{p}. If q is an odd power of p, then the orbit of $\left\{1, \beta, \beta^{2}, \ldots, \beta^{9}\right\}$ under $\operatorname{PSL}(2, q)$ is a flag-transitive $3-(q+1,10,18)$ design.

References

[1] A. Bonnecaze and P. Solé. The extended binary quadratic residue code of length 42 holds a 3-design. J. Combin. Des., 29 (2021) 528-532.
[2] Weixia Li, Dameng Deng, and Guangjun Zhang, Simple 3-($q+1,5,3$) designs admitting an automorphism group PSL $(2, q)$ with $q \equiv 1(\bmod 4)$. Ars Combin., 136 (2018) 97-108.

