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Lectures 3 and 4: Delta-matroids: Definition

A set system is a finite set E together with a nonempty set Φ ⊂ 2E of
subsets in it. Two set systems D1 = (E1; Φ1) and D2 = (E2; Φ2) are
isomorphic if there is a one-to-one map E1 → E2 taking Φ1 one-to-one to
Φ2. Below, we consider set systems up to isomorphism.

A delta-matroid is a set system (E ; Φ) possessing the following property:
for any pair ϕ, ψ ∈ Φ, and any element e ∈ ϕ∆ψ there is an element
e ′ ∈ ϕ∆ψ such that ϕ∆{e, e ′} ∈ Φ.
Here ∆ denotes the symmetric difference of two sets:
A∆B = (A \ B) ⊔ (B \ A).
The set E is called the ground set of the delta-matroid. The elements of
the set Φ are called the feasible sets of the delta-matroid.
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Lectures 3 and 4: Delta-matroids: Definition

Example

The set system ({1}; {∅, {1}}) is a delta-matroid. Indeed, for
ϕ = ∅, ψ = {1} and e = 1 ∈ ϕ∆ψ = {1} we may take e ′ = e = 1, so that
ϕ∆{e, e ′} = ϕ∆{1} = ψ, and similarly if we exchange ϕ and ψ.

Example

The set system ({1, 2, 3}; {∅, {1, 2, 3}}) is not a delta-matroid. Indeed, for
ϕ = ∅, ψ = {1, 2, 3}, and e = 1 ∈ ϕ∆ψ = {1, 2, 3}, there is no
e ′ ∈ ϕ∆ψ = {1, 2, 3} such that ϕ∆{e, e ′} ∈ Φ.
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Lectures 3 and 4: Delta-matroids: delta-matroids of graphs

There is a natural way to associate a delta-matroid to a graph.
A graph G is said to be nondegenerate if its adjacency matrix A(G ) is
nondegenerate over the field of two elements (that is, if detA(G ) = 1).

For a graph G , the associated delta-matroid DG is defined as follows:

the ground set EG of DG is V (G ), the set of vertices of G ;
the set ΦG of admissible subsets of V (G ) consists of subsets ϕ such
that the graph G |ϕ is nondegenerate;
by convention, the empty graph is nondegenerate.

Theorem (A. Bouchet (1980))

The set system DG for a graph G is indeed a delta-matroid.

Example

For the tree A3 on 3 vertices 1, 2, 3 (which has edges {1, 2} and {2, 3}),
the corresponding delta-matroid DA3 is

DA3 = ({1, 2, 3}, {∅, {1, 2}, {2, 3}}).
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Lectures 3 and 4: Delta-matroids: delta-matroids of
graphs on surfaces

There is a natural way to associate a delta-matroid to an embedded graph.
An embedded graph Γ is called a quasitree if it has a single face. (The
notion comes from the genus 0 case: a graph embedded into the sphere
has a single face if and only if it is a tree.)

For an embedded graph Γ, the associated delta-matroid DΓ is defined as
follows:

the ground set EΓ of DΓ is E (Γ), the set of edges of Γ;

the set ΦΓ of admissible subsets of E (Γ) consists of subsets ϕ such
that the embedded graph Γ|ϕ is a quasitree;

the embedded graph without edges is a quasitree if and only if it has
a single vertex.

Theorem (A. Bouchet (1980))

The set system DΓ for an embedded graph Γ is indeed a delta-matroid.
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Lectures 3 and 4: Delta-matroids: delta-matroids of
graphs on surfaces

Example

For the embedded graph Γ obtained by gluing the torus from the square,
on two edges 1, 2, the corresponding delta-matroid DΓ is

DΓ = ({1, 2}; {∅, {1, 2}}).
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Lectures 3 and 4: Delta-matroids: Orientability

A delta-matroid is even if the numbers of elements in all its feasible sets
have the same parity (either are all even or all odd).

For any graph G , its delta-matroid DG is even. Indeed, a graph G can be
nondegenerate only if it contains even number of vertices.
For an embedded graph Γ, its delta-matroid DΓ is even if and only if Γ is
orientable.
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Lectures 3 and 4: Delta-matroids: Consistency

The two constructions of delta-matroids, the one for graphs and the one
for embedded graphs, seem inharmonious. Indeed, for a graph G , the
ground set of its delta-matroid DG is the set of vertices V (G ) of G . In
contrast, for an embedded graph Γ the ground set of the delta-matroid DΓ

is the set E (Γ) of edges of Γ. The following argument shows, however,
that the two definitions are consistent.

Let us restrict ourselves with orientable embedded graphs having a single
vertex. An edge in such an embedded graph is a loop, which connects the
vertex with itself. We say that two loops intersect one another if their
ends follow the boundary of the vertex in the alternating order. The
intersection graph γ(Γ) of an embedded graph Γ with a single vertex is the
graph whose set of vertices is in one-to-one correspondence with the set of
edges of Γ, and two vertices of γ(Γ) are connected by an edge if and only
if the corresponding edges intersect.
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Lectures 3 and 4: Delta-matroids: Consistency

Theorem

For an orientable embedded graph Γ with a single vertex, the two
delta-matroids DΓ and Dγ(Γ) are naturally isomorphic to one another.

In other words, an orientable embedded graph Γ with a single vertex has a
single face iff its intersection graph γ(Γ) is nondegenerate.

The delta-matroid of an arbitrary embedded graph plays the role of
intersection graph of the embedded graph with a single vertex, that is why
edges of an embedded graph are a natural substitute for vertices of an
abstract graph.
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Lectures 3 and 4: Delta-matroids: Duality

What is the relationship between the delta-matroid of an embedded
graph Γ and that of its dual embedded graph Γ?

Theorem

The delta-matroid DΓ has the form

DΓ = EΓ ∗ DΓ = (EΓ; {ϕ∆EΓ|ϕ ∈ ΦΓ}).

In other words, feasible sets in DΓ are complements to feasible sets in Γ:
ϕ∆EΓ = EΓ \ ϕ.
Recall that the set of edges E (Γ) of the dual embedded graph is naturally
isomorphic to that of Γ, which allows one to identify the ground sets of
the delta-matroids DΓ and DΓ.
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Lectures 3 and 4: Delta-matroids: Partial duality

The duality with respect to the ground set E of a delta-matroid can be
extended to duality with respect to its arbitrary subset.
For a subset F ⊂ E of the ground set E of a delta-matroid D = (E ; Φ), we
set F ∗ D = (E ;F ∗ Φ) = (E ; {ϕ∆F |ϕ ∈ Φ}) and call F ∗ D the twist, or
the partial dual of D, with respect to F .

Theorem

For an arbitrary subset F ⊂ E of the ground set E of a
delta-matroid D = (E ; Φ), the twist F ∗ D is a delta-matroid.

Clearly, it suffices to prove the theorem for F consisting of each single
element e ∈ E . Indeed, for an arbitrary F = {e1, e2, . . . }, we have
F ∗ D = · · · ∗ {e2} ∗ {e1} ∗ D, so that twisting with respect to an arbitrary
set can be considered as a composition of twistings with respect to
one-element sets. The latter twistings commute with one another.
Partial duals of delta-matroids of abstract graphs are binary.
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Lectures 3 and 4: Delta-matroids: Partial duality for
embedded graphs

For an embedded graph Γ, the twist of its delta-matroid DΓ with respect
to its ground set E (Γ) corresponds to replacing Γ with its dual Γ. Whether
there is a natural transformation of Γ corresponding to the twist with
respect to an arbitrary given subset F ⊂ E (Γ)? Once again, it suffices to
construct such a transformation for an arbitrary F = {e}, e ∈ E (Γ).

Definition

For an edge e ∈ E (Γ) of an embedded graph Γ we set {e} ∗ Γ to be

the result of replacing two ends of e with a single vertex, e with a
loop connecting this vertex to itself, separating the chord ends
belonging to the former vertices, if e connects two different vertices;

the result of splitting the end vertex of e into two vertices, e
connecting two new vertices, its ends attached to the same boundary
segments, if e is an orientable ribbon connecting a vertex to itself.

In all the cases {e} ∗ {e} ∗ Γ = Γ, so that {e}∗ is an involution.
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Lectures 3 and 4: Delta-matroids: Distance function

For an arbitrary set system D = (E ; Φ), define the distance to D function
dD on the set 2E of subsets of the ground set by

dD(F ) = min
ϕ∈Φ

|F∆ϕ|.

In particular, the distance from a feasible set to D is 0, while the distance
to D from any nonfeasible set is positive.

Theorem

For the delta-matroid DΓ determined by an embedded graph Γ, and a
subset F ⊂ E (Γ) of its edges, the distance from F to DΓ is 1 less than the
number of faces of the embedded graph Γ|F .
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Lectures 3 and 4: Delta-matroids: Invariants

Isomorphic graphs, as well as isomorphic embedded graphs, have
isomorphic delta-matroids. Therefore, invariants of delta-matroids provide
simultaneously invariants of graphs and embedded graphs. Many of graph
and embedded graph invariants can be defined more naturally in the
language of delta-matroids.

Example

Define the number of faces f (D) of a delta-matroid D = (E ; Φ) as the
distance from the ground set E to D increased by 1:

f (D) = dD(E) + 1 = min
ϕ∈Φ

|ϕ∆E|+ 1.

For the delta-matroid of an embedded graph, the number of faces
coincides with that of the embedded graph itself.
For the delta-matroid of a graph G , the number of faces coincides with
the corank of the adjacency matrix A(G ) over the field of two elements
increased by 1.
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For the delta-matroid of an embedded graph, the number of faces
coincides with that of the embedded graph itself.
For the delta-matroid of a graph G , the number of faces coincides with
the corank of the adjacency matrix A(G ) over the field of two elements
increased by 1.
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Lectures 3 and 4: Delta-matroids: Interlace polynomial

The interlace polynomial QD(x) of a delta-matroid D is defined by

QD(x) =
∑
F⊂E

xdD(F ).

An element e of delta-matroid is a loop if it does not enter any feasible
set; e is a coloop if it enters each feasible set.

Theorem

Let D = (E ,Φ) be a delta-matroid with an element e ∈ E that is neither a
coloop nor a loop. Then we have

QD(x) = QD\e(x) + Q(D∗e)\e(x).
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Lectures 3 and 4: Delta-matroids: Interlace polynomial

Originally, the interlace polynomial of graphs was defined recursively. In
order to introduce it, we firstly define the pivot operation for graphs.
Let G be a graph, and let a and b be its two vertices connected by an
edge. All the vertices except for a and b are divided into four classes:

1 vertices adjacent to both a and b;

2 vertices adjacent to a but not to b;

3 vertices adjacent to b but not to a;

4 vertices adjacent neither to a nor to b.

The pivot G ab is the graph obtained from G by removing all the edges
connecting vertices from two different classes among 1–3 above and
adding such edges if they are not present in G . For chord diagrams and
delta-matroids, pivot acts as partial duality with respect to the subset
{a, b} of the base set. On the delta-matroid DG (V (G ); Φ(G )) of a
graph G , the pivot acts as the partial duality with respect to the subset
{a, b} ⊂ V (G ). In particular, the interlace polynomial of graphs is
invariant under pivot.
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Lectures 3 and 4: Delta-matroids: Interlace polynomial

The interlace polynomial LG (x) is defined by the initial condition
if there are no edges in the graph G , then LG (x) = (x + 1)n where n is the
number of vertices in G
and the following recurrence:
if vertices a and b of the graph G are connected by an edge, then

LG (x) = LG\a(x) + LG ab\b(x), (1)

where G \ a is the graph obtained from G by erasing the vertex a and all
the edges connecting a with other vertices.
In some papers the interlace polynomial is normalized differently; namely,
it is defined as LG (x − 1) in our notation; in other words, the initial
condition for the discrete graph on n vertices is xn rather than (x + 1)n.
The interlace polynomial admits a two-variable extension, which is defined
for delta-matroids as

QD(x , y) =
∑
F⊂E

y |F |xdD(F ).
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Lectures 3 and 4: Delta-matroids: Problems

For which values of n the complete graph Kn is nondegenerate?

For which values of n,m the complete bipartite graph Km,n is
nondegenerate?

Compute the interlace polynomial of the complete graph Kn.

Compute the interlace polynomial of your favorite embedded graph.
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Lectures 3 and 4: Delta-matroids: Problems

Prove that delta-matroids of embedded graphs are binary.

Prove that the interlace polynomial of a delta-matroid is invariant
under partial duality, so that partially dual delta-matroids have the
same interlace polynomial.

Let γ(Γ) be the intersection graph of an embedded graph with a
single vertex. Prove that the number of faces f (Γ) of Γ is
corank A(γ(Γ)) + 1.
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Thank you
for your attention
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