Invariants of graphs, embedded graphs, delta-matroids, and permutations

Sergei Lando

National Research University Higher School of Economics, Skolkovo Institute of Science and Technology, Moscow, Russia

August 11-25, 2024

- Definition of a delta-matroid
- 2 Examples
- Associating a delta-matroid to a graph
- Associating a delta-matroid to an embedded graph
- Duality and partial duality
- Invariants of delta-matroids

A set system is a finite set \mathcal{E} together with a nonempty set $\Phi \subset 2^{\mathcal{E}}$ of subsets in it. Two set systems $D_1 = (\mathcal{E}_1; \Phi_1)$ and $D_2 = (\mathcal{E}_2; \Phi_2)$ are *isomorphic* if there is a one-to-one map $\mathcal{E}_1 \to \mathcal{E}_2$ taking Φ_1 one-to-one to Φ_2 . Below, we consider set systems up to isomorphism.

A set system is a finite set \mathcal{E} together with a nonempty set $\Phi \subset 2^{\mathcal{E}}$ of subsets in it. Two set systems $D_1 = (\mathcal{E}_1; \Phi_1)$ and $D_2 = (\mathcal{E}_2; \Phi_2)$ are *isomorphic* if there is a one-to-one map $\mathcal{E}_1 \to \mathcal{E}_2$ taking Φ_1 one-to-one to Φ_2 . Below, we consider set systems up to isomorphism.

A delta-matroid is a set system $(\mathcal{E}; \Phi)$ possessing the following property: for any pair $\phi, \psi \in \Phi$, and any element $e \in \phi \Delta \psi$ there is an element $e' \in \phi \Delta \psi$ such that $\phi \Delta \{e, e'\} \in \Phi$. Here Δ denotes the symmetric difference of two sets: $A\Delta B = (A \setminus B) \sqcup (B \setminus A)$. A set system is a finite set \mathcal{E} together with a nonempty set $\Phi \subset 2^{\mathcal{E}}$ of subsets in it. Two set systems $D_1 = (\mathcal{E}_1; \Phi_1)$ and $D_2 = (\mathcal{E}_2; \Phi_2)$ are *isomorphic* if there is a one-to-one map $\mathcal{E}_1 \to \mathcal{E}_2$ taking Φ_1 one-to-one to Φ_2 . Below, we consider set systems up to isomorphism.

A delta-matroid is a set system $(\mathcal{E}; \Phi)$ possessing the following property: for any pair $\phi, \psi \in \Phi$, and any element $e \in \phi \Delta \psi$ there is an element $e' \in \phi \Delta \psi$ such that $\phi \Delta \{e, e'\} \in \Phi$. Here Δ denotes the symmetric difference of two sets: $A\Delta B = (A \setminus B) \sqcup (B \setminus A)$. The set \mathcal{E} is called the *ground set* of the delta-matroid. The elements of

the set Φ are called the *feasible sets* of the delta-matroid.

Lectures 3 and 4: Delta-matroids: Definition

Example

The set system ({1}; { \emptyset , {1}}) is a delta-matroid. Indeed, for $\phi = \emptyset, \psi = \{1\}$ and $e = 1 \in \phi \Delta \psi = \{1\}$ we may take e' = e = 1, so that $\phi \Delta \{e, e'\} = \phi \Delta \{1\} = \psi$, and similarly if we exchange ϕ and ψ .

Example

The set system ({1}; { \emptyset , {1}}) is a delta-matroid. Indeed, for $\phi = \emptyset, \psi = \{1\}$ and $e = 1 \in \phi \Delta \psi = \{1\}$ we may take e' = e = 1, so that $\phi \Delta \{e, e'\} = \phi \Delta \{1\} = \psi$, and similarly if we exchange ϕ and ψ .

Example

The set system ({1,2,3}; { \emptyset , {1,2,3}}) is not a delta-matroid. Indeed, for $\phi = \emptyset, \psi = \{1,2,3\}$, and $e = 1 \in \phi \Delta \psi = \{1,2,3\}$, there is no $e' \in \phi \Delta \psi = \{1,2,3\}$ such that $\phi \Delta \{e,e'\} \in \Phi$.

• • = • • = •

There is a natural way to associate a delta-matroid to a graph. A graph G is said to be *nondegenerate* if its adjacency matrix A(G) is nondegenerate over the field of two elements (that is, if det A(G) = 1).

There is a natural way to associate a delta-matroid to a graph. A graph G is said to be *nondegenerate* if its adjacency matrix A(G) is nondegenerate over the field of two elements (that is, if det A(G) = 1). For a graph G, the associated delta-matroid D_G is defined as follows:

- the ground set \mathcal{E}_G of D_G is V(G), the set of vertices of G;
- the set Φ_G of admissible subsets of V(G) consists of subsets φ such that the graph G|_φ is nondegenerate;
- by convention, the empty graph is nondegenerate.

There is a natural way to associate a delta-matroid to a graph. A graph G is said to be *nondegenerate* if its adjacency matrix A(G) is nondegenerate over the field of two elements (that is, if det A(G) = 1). For a graph G, the associated delta-matroid D_G is defined as follows:

- the ground set \mathcal{E}_G of D_G is V(G), the set of vertices of G;
- the set Φ_G of admissible subsets of V(G) consists of subsets φ such that the graph G|_φ is nondegenerate;
- by convention, the empty graph is nondegenerate.

Theorem (A. Bouchet (1980))

The set system D_G for a graph G is indeed a delta-matroid.

There is a natural way to associate a delta-matroid to a graph. A graph G is said to be *nondegenerate* if its adjacency matrix A(G) is nondegenerate over the field of two elements (that is, if det A(G) = 1). For a graph G, the associated delta-matroid D_G is defined as follows:

- the ground set \mathcal{E}_G of D_G is V(G), the set of vertices of G;
- the set Φ_G of admissible subsets of V(G) consists of subsets φ such that the graph G|_φ is nondegenerate;
- by convention, the empty graph is nondegenerate.

Theorem (A. Bouchet (1980))

The set system D_G for a graph G is indeed a delta-matroid.

Example

For the tree A_3 on 3 vertices 1, 2, 3 (which has edges $\{1, 2\}$ and $\{2, 3\}$), the corresponding delta-matroid D_{A_3} is

$$D_{A_3} = (\{1, 2, 3\}, \{\emptyset, \{1, 2\}, \{2, 3\}\}).$$

There is a natural way to associate a delta-matroid to an embedded graph. An embedded graph Γ is called a *quasitree* if it has a single face. (The notion comes from the genus 0 case: a graph embedded into the sphere has a single face if and only if it is a tree.)

There is a natural way to associate a delta-matroid to an embedded graph. An embedded graph Γ is called a *quasitree* if it has a single face. (The notion comes from the genus 0 case: a graph embedded into the sphere has a single face if and only if it is a tree.)

For an embedded graph Γ , the associated delta-matroid D_{Γ} is defined as follows:

- the ground set \mathcal{E}_{Γ} of D_{Γ} is $E(\Gamma)$, the set of edges of Γ ;
- the set Φ_Γ of admissible subsets of E(Γ) consists of subsets φ such that the embedded graph Γ|_φ is a quasitree;
- the embedded graph without edges is a quasitree if and only if it has a single vertex.

There is a natural way to associate a delta-matroid to an embedded graph. An embedded graph Γ is called a *quasitree* if it has a single face. (The notion comes from the genus 0 case: a graph embedded into the sphere has a single face if and only if it is a tree.)

For an embedded graph Γ , the associated delta-matroid D_{Γ} is defined as follows:

- the ground set \mathcal{E}_{Γ} of D_{Γ} is $E(\Gamma)$, the set of edges of Γ ;
- the set Φ_Γ of admissible subsets of E(Γ) consists of subsets φ such that the embedded graph Γ|_φ is a quasitree;
- the embedded graph without edges is a quasitree if and only if it has a single vertex.

Theorem (A. Bouchet (1980))

The set system D_{Γ} for an embedded graph Γ is indeed a delta-matroid.

Example

For the embedded graph Γ obtained by gluing the torus from the square, on two edges 1, 2, the corresponding delta-matroid D_{Γ} is

$$D_{\Gamma} = (\{1,2\}; \{\emptyset,\{1,2\}\}).$$

A delta-matroid is *even* if the numbers of elements in all its feasible sets have the same parity (either are all even or all odd).

A delta-matroid is *even* if the numbers of elements in all its feasible sets have the same parity (either are all even or all odd). For any graph G, its delta-matroid D_G is even. Indeed, a graph G can be nondegenerate only if it contains even number of vertices. A delta-matroid is *even* if the numbers of elements in all its feasible sets have the same parity (either are all even or all odd). For any graph G, its delta-matroid D_G is even. Indeed, a graph G can be nondegenerate only if it contains even number of vertices. For an embedded graph Γ , its delta-matroid D_{Γ} is even if and only if Γ is orientable. The two constructions of delta-matroids, the one for graphs and the one for embedded graphs, seem inharmonious. Indeed, for a graph G, the ground set of its delta-matroid D_G is the set of vertices V(G) of G. In contrast, for an embedded graph Γ the ground set of the delta-matroid D_{Γ} is the set $E(\Gamma)$ of edges of Γ . The following argument shows, however, that the two definitions are consistent.

The two constructions of delta-matroids, the one for graphs and the one for embedded graphs, seem inharmonious. Indeed, for a graph G, the ground set of its delta-matroid D_G is the set of vertices V(G) of G. In contrast, for an embedded graph Γ the ground set of the delta-matroid D_{Γ} is the set $E(\Gamma)$ of edges of Γ . The following argument shows, however, that the two definitions are consistent.

Let us restrict ourselves with orientable embedded graphs having a single vertex. An edge in such an embedded graph is a loop, which connects the vertex with itself. We say that two loops *intersect* one another if their ends follow the boundary of the vertex in the alternating order. The *intersection graph* $\gamma(\Gamma)$ of an embedded graph Γ with a single vertex is the graph whose set of vertices is in one-to-one correspondence with the set of edges of Γ , and two vertices of $\gamma(\Gamma)$ are connected by an edge if and only if the corresponding edges intersect.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

For an orientable embedded graph Γ with a single vertex, the two delta-matroids D_{Γ} and $D_{\gamma(\Gamma)}$ are naturally isomorphic to one another.

In other words, an orientable embedded graph Γ with a single vertex has a single face iff its intersection graph $\gamma(\Gamma)$ is nondegenerate.

Theorem

For an orientable embedded graph Γ with a single vertex, the two delta-matroids D_{Γ} and $D_{\gamma(\Gamma)}$ are naturally isomorphic to one another.

In other words, an orientable embedded graph Γ with a single vertex has a single face iff its intersection graph $\gamma(\Gamma)$ is nondegenerate. The delta-matroid of an arbitrary embedded graph plays the role of intersection graph of the embedded graph with a single vertex, that is why *edges* of an embedded graph are a natural substitute for *vertices* of an abstract graph. What is the relationship between the delta-matroid of an embedded graph Γ and that of its *dual* embedded graph $\overline{\Gamma}$?

What is the relationship between the delta-matroid of an embedded graph Γ and that of its *dual* embedded graph $\overline{\Gamma}$?

Theorem

The delta-matroid $D_{\overline{\Gamma}}$ has the form

$$D_{\overline{\Gamma}} = \mathcal{E}_{\Gamma} * D_{\Gamma} = (\mathcal{E}_{\Gamma}; \{\phi \Delta \mathcal{E}_{\Gamma} | \phi \in \Phi_{\Gamma}\}).$$

In other words, feasible sets in $D_{\overline{\Gamma}}$ are complements to feasible sets in Γ : $\phi \Delta \mathcal{E}_{\Gamma} = \mathcal{E}_{\Gamma} \setminus \phi$. What is the relationship between the delta-matroid of an embedded graph Γ and that of its *dual* embedded graph $\overline{\Gamma}$?

Theorem

The delta-matroid $D_{\overline{\Gamma}}$ has the form

$$D_{\overline{\Gamma}} = \mathcal{E}_{\Gamma} * D_{\Gamma} = (\mathcal{E}_{\Gamma}; \{\phi \Delta \mathcal{E}_{\Gamma} | \phi \in \Phi_{\Gamma}\}).$$

In other words, feasible sets in $D_{\overline{\Gamma}}$ are complements to feasible sets in Γ : $\phi \Delta \mathcal{E}_{\Gamma} = \mathcal{E}_{\Gamma} \setminus \phi$. Recall that the set of edges $E(\overline{\Gamma})$ of the dual embedded graph is naturally isomorphic to that of Γ , which allows one to identify the ground sets of the delta-matroids D_{Γ} and $D_{\overline{\Gamma}}$.

Lectures 3 and 4: Delta-matroids: Partial duality

The duality with respect to the ground set \mathcal{E} of a delta-matroid can be extended to duality with respect to its arbitrary subset.

For a subset $F \subset \mathcal{E}$ of the ground set \mathcal{E} of a delta-matroid $D = (\mathcal{E}; \Phi)$, we set $F * D = (\mathcal{E}; F * \Phi) = (\mathcal{E}; \{\phi \Delta F | \phi \in \Phi\})$ and call F * D the *twist*, or the *partial dual of D*, *with respect to F*.

Lectures 3 and 4: Delta-matroids: Partial duality

The duality with respect to the ground set \mathcal{E} of a delta-matroid can be extended to duality with respect to its arbitrary subset. For a subset $F \subset \mathcal{E}$ of the ground set \mathcal{E} of a delta-matroid $D = (\mathcal{E}; \Phi)$, we

set $F * D = (\mathcal{E}; F * \Phi) = (\mathcal{E}; \{\phi \Delta F | \phi \in \Phi\})$ and call F * D the *twist*, or the *partial dual of D*, *with respect to F*.

Theorem

For an arbitrary subset $F \subset \mathcal{E}$ of the ground set \mathcal{E} of a delta-matroid $D = (\mathcal{E}; \Phi)$, the twist F * D is a delta-matroid.

Clearly, it suffices to prove the theorem for F consisting of each single element $e \in \mathcal{E}$. Indeed, for an arbitrary $F = \{e_1, e_2, ...\}$, we have $F * D = \cdots * \{e_2\} * \{e_1\} * D$, so that twisting with respect to an arbitrary set can be considered as a composition of twistings with respect to one-element sets. The latter twistings commute with one another. Partial duals of delta-matroids of abstract graphs are *binary*.

Lectures 3 and 4: Delta-matroids: Partial duality for embedded graphs

For an embedded graph Γ , the twist of its delta-matroid D_{Γ} with respect to its ground set $E(\Gamma)$ corresponds to replacing Γ with its dual $\overline{\Gamma}$. Whether there is a natural transformation of Γ corresponding to the twist with respect to an arbitrary given subset $F \subset E(\Gamma)$? Once again, it suffices to construct such a transformation for an arbitrary $F = \{e\}, e \in E(\Gamma)$.

Lectures 3 and 4: Delta-matroids: Partial duality for embedded graphs

For an embedded graph Γ , the twist of its delta-matroid D_{Γ} with respect to its ground set $E(\Gamma)$ corresponds to replacing Γ with its dual $\overline{\Gamma}$. Whether there is a natural transformation of Γ corresponding to the twist with respect to an arbitrary given subset $F \subset E(\Gamma)$? Once again, it suffices to construct such a transformation for an arbitrary $F = \{e\}, e \in E(\Gamma)$.

Definition

For an edge $e \in E(\Gamma)$ of an embedded graph Γ we set $\{e\} * \Gamma$ to be

- the result of replacing two ends of *e* with a single vertex, *e* with a loop connecting this vertex to itself, separating the chord ends belonging to the former vertices, if *e* connects two different vertices;
- the result of splitting the end vertex of *e* into two vertices, *e* connecting two new vertices, its ends attached to the same boundary segments, if *e* is an orientable ribbon connecting a vertex to itself.

In all the cases $\{e\} * \{e\} * \Gamma = \Gamma$, so that $\{e\} *$ is an involution.

S. Lando (HSE Moscow)

For an arbitrary set system $D = (\mathcal{E}; \Phi)$, define the *distance to* D function d_D on the set $2^{\mathcal{E}}$ of subsets of the ground set by

$$d_D(F) = \min_{\phi \in \Phi} |F\Delta \phi|.$$

For an arbitrary set system $D = (\mathcal{E}; \Phi)$, define the *distance to* D function d_D on the set $2^{\mathcal{E}}$ of subsets of the ground set by

$$d_D(F) = \min_{\phi \in \Phi} |F\Delta\phi|.$$

In particular, the distance from a feasible set to D is 0, while the distance to D from any nonfeasible set is positive.

For an arbitrary set system $D = (\mathcal{E}; \Phi)$, define the *distance to* D function d_D on the set $2^{\mathcal{E}}$ of subsets of the ground set by

$$d_D(F) = \min_{\phi \in \Phi} |F\Delta\phi|.$$

In particular, the distance from a feasible set to D is 0, while the distance to D from any nonfeasible set is positive.

Theorem

For the delta-matroid D_{Γ} determined by an embedded graph Γ , and a subset $F \subset E(\Gamma)$ of its edges, the distance from F to D_{Γ} is 1 less than the number of faces of the embedded graph $\Gamma|_{F}$.

Lectures 3 and 4: Delta-matroids: Invariants

Isomorphic graphs, as well as isomorphic embedded graphs, have isomorphic delta-matroids. Therefore, invariants of delta-matroids provide simultaneously invariants of graphs and embedded graphs. Many of graph and embedded graph invariants can be defined more naturally in the language of delta-matroids.

Lectures 3 and 4: Delta-matroids: Invariants

Isomorphic graphs, as well as isomorphic embedded graphs, have isomorphic delta-matroids. Therefore, invariants of delta-matroids provide simultaneously invariants of graphs and embedded graphs. Many of graph and embedded graph invariants can be defined more naturally in the language of delta-matroids.

Example

Define the number of faces f(D) of a delta-matroid $D = (\mathcal{E}; \Phi)$ as the distance from the ground set \mathcal{E} to D increased by 1:

$$f(D) = d_D(\mathcal{E}) + 1 = \min_{\phi \in \Phi} |\phi \Delta \mathcal{E}| + 1.$$

Lectures 3 and 4: Delta-matroids: Invariants

Isomorphic graphs, as well as isomorphic embedded graphs, have isomorphic delta-matroids. Therefore, invariants of delta-matroids provide simultaneously invariants of graphs and embedded graphs. Many of graph and embedded graph invariants can be defined more naturally in the language of delta-matroids.

Example

Define the number of faces f(D) of a delta-matroid $D = (\mathcal{E}; \Phi)$ as the distance from the ground set \mathcal{E} to D increased by 1:

$$f(D) = d_D(\mathcal{E}) + 1 = \min_{\phi \in \Phi} |\phi \Delta \mathcal{E}| + 1.$$

For the delta-matroid of an embedded graph, the number of faces coincides with that of the embedded graph itself.

For the delta-matroid of a graph G, the number of faces coincides with the corank of the adjacency matrix A(G) over the field of two elements increased by 1.

The interlace polynomial $Q_D(x)$ of a delta-matroid D is defined by

$$Q_D(x) = \sum_{F \subset \mathcal{E}} x^{d_D(F)}.$$

The interlace polynomial $Q_D(x)$ of a delta-matroid D is defined by

$$Q_D(x) = \sum_{F \subset \mathcal{E}} x^{d_D(F)}.$$

An element e of delta-matroid is a *loop* if it does not enter any feasible set; e is a *coloop* if it enters each feasible set.

Theorem

Let $D = (\mathcal{E}, \Phi)$ be a delta-matroid with an element $e \in \mathcal{E}$ that is neither a coloop nor a loop. Then we have

$$Q_D(x) = Q_{D\setminus e}(x) + Q_{(D*e)\setminus e}(x).$$

Lectures 3 and 4: Delta-matroids: Interlace polynomial

Originally, the interlace polynomial of graphs was defined recursively. In order to introduce it, we firstly define the pivot operation for graphs. Let G be a graph, and let a and b be its two vertices connected by an edge. All the vertices except for a and b are divided into four classes:

- vertices adjacent to both a and b;
- vertices adjacent to a but not to b;
- vertices adjacent to b but not to a;
- vertices adjacent neither to *a* nor to *b*.

The pivot G^{ab} is the graph obtained from G by removing all the edges connecting vertices from two different classes among 1–3 above and adding such edges if they are not present in G. For chord diagrams and delta-matroids, pivot acts as partial duality with respect to the subset $\{a, b\}$ of the base set. On the delta-matroid $D_G(V(G); \Phi(G))$ of a graph G, the pivot acts as the partial duality with respect to the subset $\{a, b\} \subset V(G)$. In particular, the interlace polynomial of graphs is invariant under pivot.

S. Lando (HSE Moscow)

Lectures 3 and 4: Delta-matroids: Interlace polynomial

The interlace polynomial $L_G(x)$ is defined by the initial condition if there are no edges in the graph G, then $L_G(x) = (x+1)^n$ where n is the number of vertices in G and the following recurrence:

if vertices a and b of the graph G are connected by an edge, then

$$L_G(x) = L_{G \setminus a}(x) + L_{G^{ab} \setminus b}(x), \tag{1}$$

where $G \setminus a$ is the graph obtained from G by erasing the vertex a and all the edges connecting a with other vertices.

In some papers the interlace polynomial is normalized differently; namely, it is defined as $L_G(x-1)$ in our notation; in other words, the initial condition for the discrete graph on n vertices is x^n rather than $(x+1)^n$. The interlace polynomial admits a two-variable extension, which is defined for delta-matroids as

$$\overline{Q}_D(x,y) = \sum_{F \subset \mathcal{E}} y^{|F|} x^{d_D(F)}.$$

- For which values of n the complete graph K_n is nondegenerate?
- For which values of *n*, *m* the complete bipartite graph *K*_{*m*,*n*} is nondegenerate?
- Compute the interlace polynomial of the complete graph K_n .
- Compute the interlace polynomial of your favorite embedded graph.

- Prove that delta-matroids of embedded graphs are binary.
- Prove that the interlace polynomial of a delta-matroid is invariant under partial duality, so that partially dual delta-matroids have the same interlace polynomial.
- Let γ(Γ) be the intersection graph of an embedded graph with a single vertex. Prove that the number of faces f(Γ) of Γ is corank A(γ(Γ)) + 1.

Thank you for your attention