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Lecture 7: 4-term relation for graphs: Definition

To each chord diagram, a graph, its intersection graph. is associated.
Hence, any graph invariant determines a function on chord diagrams. It is
interesting to know, which of these functions are weight systems and lead,
therefore, to knot invariants.

Definition

A graph invariant f satisfies 4-term relations if for any graph G and any
pair A,B of its vertices we have

f (G )− f (G ′
AB) = f (G̃AB)− f (G̃ ′

AB),

where G ′
AB is obtained from G by switching the adjacency between A

and B, G̃AB is the result of switching the adjacency to A of all vertices
adjacent to B.

Theorem

Any graph invariant satisfying 4-term relations determines a weight system.
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Lecture 7: 4-term relation for graphs: Examples
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Figure: A 4-term relation for graphs with 3 vertices
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Figure: A 4-term relation for graphs with 4 vertices
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Lecture 7: 4-term relation for graphs: Examples

Example

The corank of the adjacency matrix A(G ) of a graph G satisfies 4-term
relations. In fact, the corank of the adjacency matrix of the intersection
graph of a chord diagram, when increased by 1, yields the number of faces
of the chord diagram in question.

Example

The chromatic polynomial of a graph G satisfies 4-term relations.

S. Lando (HSE Moscow) Invariants Hebei Normal University, China 5 / 13



Lecture 7: 4-term relation for graphs: Examples

Example

The corank of the adjacency matrix A(G ) of a graph G satisfies 4-term
relations. In fact, the corank of the adjacency matrix of the intersection
graph of a chord diagram, when increased by 1, yields the number of faces
of the chord diagram in question.

Example

The chromatic polynomial of a graph G satisfies 4-term relations.

S. Lando (HSE Moscow) Invariants Hebei Normal University, China 5 / 13



Lecture 7: 4-term relation for graphs: Examples

In 1995, R. Stanley generalized the chromatic polynomial, which is a
polynomial in one variable, to a graph invariant taking values in the ring of
polynomials in infinitely many variables. Let
h : V (G ) → X = {x1, x2, x3, . . . } be a mapping. We associate to this
mapping the monomial mh, which is the product of the values of h on the
vertices, mh =

∏
v∈V (G) h(v).

Then Stanley’s symmetrized chromatic polynomial SG (x1, x2, . . . ) is
defined as

SG (x1, x2, . . . ) =
∑

h:V (G)→X
h proper

mh.

Here a coloring h is proper if any two neighboring vertices v1, v2 are
colored differently, h(v1) ̸= h(v2).

Stanley’s symmetrized chromatic polynomial is equivalent to the weighted
chromatic polynomial, introduced by S. Chmutov, S. Duzhin and S. L. in
1994.
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Lecture 7: 4-term relation for graphs: Examples

A weighted graph is a simple graph G together with a weight, which
associates a positive integer to each vertex. Define the weighted chromatic
polynomial W (p1, p2, p3, . . . ) by the relations:

the weighted chromatic polynomial takes an isolated vertex of
weight n to pn;

it is multiplicative, WG1⊔G2 = WG1WG2 ;

it satisfies the deletion-contraction relation

WG = WG ′
e
+WG ′′

e

for an arbitrary edge e ∈ E (G ), where G ′
e is the result of deleting G ,

and G ′′
e is the result of contracting e; the new vertex which arises

under contraction gets the weight equal to the sum of the weights of
two ends of e.
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Lecture 7: 4-term relation for graphs: Examples

Theorem

Make a simple graph into a weighted graph by assigning weight 1 to each
vertex. The weighted chromatic polynomial of these weighted graphs
satisfies 4-term relations for graphs.
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Lecture 7: 4-term relation for graphs: 4-term relations for
delta-matroids

Theorem

The interlace polynomial of a graph satisfies 4-term relations.

Maybe the easiest way to prove this assertion is to introduce 4-term
relations for delta-matroids, and then prove that the interlace polynomial
of delta-matroids satisfies these 4-term relations.
The 4-term relations for delta-matroids have the same form

f (D)− f (D ′
ab) = f (D̃ab)− f (D̃ ′

ab)

as for chord diagrams or graphs, but we need to introduce two operations
D 7→ D ′

ab (the first Vassiliev move) and D 7→ D̃ab (the second Vassiliev
move).
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Lecture 7: 4-term relation for graphs: Vassiliev moves for
delta-matroids

It is easier to define the second Vassiliev move:

D̃ab = (E ; Φ̃ab), where Φ̃ab = Φ∆{ϕ⊔{a}|ϕ⊔{b} ∈ Φ and ϕ ⊂ E\{a, b}}.

The first Vassiliev move is then defined as follows:

D ′
ab = (E ; Φ′

ab), where Φ′
ab = (̃Φ ∗ b)ab ∗ b.

Theorem

For delta-matroids of embedded graphs, the first and the second Vassiliev
moves are consistent with the ordinary operations.
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Lecture 6: Weight systems: Problems

A perfect matching in a graph G is a subset of the set E (G ) of its
vertices such that each vertex of G belongs to a single edge in the
subset. For example, the number of perfect matchings in the complete
graph Kn is 0 if n is odd and is (2m − 1)!! = 1 · 3 · 5 · · · · · (2m − 1)
provided n = 2m is even. Prove that the number of perfect matchings
satisfies 4-term relations for graphs.

Extend the previous result to the graph matching polynomial defined
as follows:

MG (t) =
∑
F

t |F |,

where the sum runs over all subsets F ⊂ E (G ) such that each vertex
in V (G ) is an end of at most one edge in F .
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Lecture 6: Weight systems: Problems

Prove that the substitution pi = (−1)ic , i = 1, 2, . . . makes Stanley’s
symmetrized chromatic polynomial into the chromatic polynomial.

Prove that Stanley’s symmetrized chromatic polynomial satisfies
4-term relations for graphs.

Prove that the interlace polynomial satisfies 4-term relations for
delta-matroids.
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Thank you
for your attention
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