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Lecture 7: 4-term relation for graphs

@ 4-term relations for graphs

@ 4-invariants of graphs

© Examples

@ 4-invariants for delta-matroids

© Examples
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Lecture 7: 4-term relation for graphs: Definition

To each chord diagram, a graph, its intersection graph. is associated.
Hence, any graph invariant determines a function on chord diagrams. It is

interesting to know, which of these functions are weight systems and lead,
therefore, to knot invariants.
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Lecture 7: 4-term relation for graphs: Definition

To each chord diagram, a graph, its intersection graph. is associated.
Hence, any graph invariant determines a function on chord diagrams. It is
interesting to know, which of these functions are weight systems and lead,
therefore, to knot invariants.

Definition

A graph invariant f satisfies 4-term relations if for any graph G and any
pair A, B of its vertices we have

f(G) — f(Gag) = F(Gag) — f(G'g),

where G, is obtained from G by switching the adjacency between A

and B, Gpg is the result of switching the adjacency to A of all vertices
adjacent to B.
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To each chord diagram, a graph, its intersection graph. is associated.
Hence, any graph invariant determines a function on chord diagrams. It is
interesting to know, which of these functions are weight systems and lead,
therefore, to knot invariants.

Definition

A graph invariant f satisfies 4-term relations if for any graph G and any
pair A, B of its vertices we have

f(G) — f(Gag) = f(Gag) — F(G'ag),

where G, is obtained from G by switching the adjacency between A

and B, Gpg is the result of switching the adjacency to A of all vertices
adjacent to B.

Any graph invariant satisfying 4-term relations determines a weight system.
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Lecture 7: 4-term relation for graphs: Examples

VARVAGICIRY

Figure: A 4-term relation for graphs with 3 vertices
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Lecture 7: 4-term relation for graphs: Examples

VARVAGICIRY

Figure: A 4-term relation for graphs with 3 vertices
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Figure: A 4-term relation for graphs with 4 vertices
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Lecture 7: 4-term relation for graphs: Examples

The corank of the adjacency matrix A(G) of a graph G satisfies 4-term
relations. In fact, the corank of the adjacency matrix of the intersection
graph of a chord diagram, when increased by 1, yields the number of faces
of the chord diagram in question.
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Lecture 7: 4-term relation for graphs: Examples

The corank of the adjacency matrix A(G) of a graph G satisfies 4-term
relations. In fact, the corank of the adjacency matrix of the intersection
graph of a chord diagram, when increased by 1, yields the number of faces
of the chord diagram in question.

The chromatic polynomial of a graph G satisfies 4-term relations. \
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Lecture 7: 4-term relation for graphs: Examples

In 1995, R. Stanley generalized the chromatic polynomial, which is a
polynomial in one variable, to a graph invariant taking values in the ring of
polynomials in infinitely many variables. Let

h:V(G) - X ={x1,x2,x3,...} be a mapping. We associate to this
mapping the monomial my, which is the product of the values of h on the
vertices, mp = [[,cv(g) h(V).

Then Stanley’s symmetrized chromatic polynomial Sg(x1,x2,...) is

defined as
SG(Xl,Xz,...): Z mp.
h:V(G)—X

h proper

Here a coloring h is proper if any two neighboring vertices vy, v» are
colored differently, h(v1) # h(v2).
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In 1995, R. Stanley generalized the chromatic polynomial, which is a
polynomial in one variable, to a graph invariant taking values in the ring of
polynomials in infinitely many variables. Let

h:V(G) - X ={x1,x2,x3,...} be a mapping. We associate to this
mapping the monomial my, which is the product of the values of h on the

vertices, mp = [[,cv(g) h(V).
Then Stanley’s symmetrized chromatic polynomial Sg(x1,x2,...) is

defined as
SG(Xl,Xz,...): Z mp.
h:V(G)—X

h proper

Here a coloring h is proper if any two neighboring vertices vy, v» are
colored differently, h(v1) # h(v2).

Stanley's symmetrized chromatic polynomial is equivalent to the weighted
chromatic polynomial, introduced by S. Chmutov, S. Duzhin and S. L. in
1994.
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Lecture 7: 4-term relation for graphs: Examples

A weighted graph is a simple graph G together with a weight, which
associates a positive integer to each vertex. Define the weighted chromatic
polynomial W(p1, p2, p3, - ..) by the relations:

@ the weighted chromatic polynomial takes an isolated vertex of
weight n to pp;

e it is multiplicative, Wg, 1,6, = Wg, Wa,;
@ it satisfies the deletion-contraction relation

We = We; + Wy

for an arbitrary edge e € E(G), where G/ is the result of deleting G,
and G/ is the result of contracting e; the new vertex which arises

under contraction gets the weight equal to the sum of the weights of
two ends of e.
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Lecture 7: 4-term relation for graphs: Examples

Make a simple graph into a weighted graph by assigning weight 1 to each
vertex. The weighted chromatic polynomial of these weighted graphs
satisfies 4-term relations for graphs.
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Lecture 7: 4-term relation for graphs: 4-term relations for

delta-matroids

The interlace polynomial of a graph satisfies 4-term relations. \
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Lecture 7: 4-term relation for graphs: 4-term relations for

delta-matroids

The interlace polynomial of a graph satisfies 4-term relations. \

Maybe the easiest way to prove this assertion is to introduce 4-term
relations for delta-matroids, and then prove that the interlace polynomial
of delta-matroids satisfies these 4-term relations.

The 4-term relations for delta-matroids have the same form

F(D) — £(Dly) = f(Dap) — F(DL)

as for chord diagrams or graphs, but we need to introduce two operations
D +— D!, (the first Vassiliev move) and D — D,, (the second Vassiliev

move).
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Lecture 7: 4-term relation for graphs: Vassiliev moves for

delta-matroids

It is easier to define the second Vassiliev move:

Dap = (£;P,p), where ®,, = DA{L{a}|¢pL{b} € ® and ¢ C E\{a, b}}.
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Lecture 7: 4-term relation for graphs: Vassiliev moves for

delta-matroids

It is easier to define the second Vassiliev move:
Dap = (€;®,5), where ®,, = dA{pLI{a}|pLI{b} € ® and ¢ C £\{a, b}}.

The first Vassiliev move is then defined as follows:

P

p = (E;PL,), where &L, = (& xb),, * b.
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Lecture 7: 4-term relation for graphs: Vassiliev moves for

delta-matroids

It is easier to define the second Vassiliev move:
Dap = (€;®,5), where ®,, = dA{pLI{a}|pLI{b} € ® and ¢ C £\{a, b}}.

The first Vassiliev move is then defined as follows:

e~ —

b= (E; PLp), where &, = (¥ xb),, * b.

For delta-matroids of embedded graphs, the first and the second Vassiliev
moves are consistent with the ordinary operations.
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Lecture 6: Weight systems: Problems

@ A perfect matching in a graph G is a subset of the set E(G) of its
vertices such that each vertex of G belongs to a single edge in the
subset. For example, the number of perfect matchings in the complete
graph K, is 0 if nis odd and is 2m—-1)!=1-3-5.---. (2m—1)
provided n = 2m is even. Prove that the number of perfect matchings
satisfies 4-term relations for graphs.

@ Extend the previous result to the graph matching polynomial defined

as follows:
Mg(t) =Y tFl,
F

where the sum runs over all subsets F C E(G) such that each vertex
in V(G) is an end of at most one edge in F.
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Lecture 6: Weight systems: Problems

o Prove that the substitution p; = (—1)’c, i = 1,2,... makes Stanley's
symmetrized chromatic polynomial into the chromatic polynomial.

@ Prove that Stanley's symmetrized chromatic polynomial satisfies
4-term relations for graphs.

@ Prove that the interlace polynomial satisfies 4-term relations for
delta-matroids.
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Thank you
for your attention
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