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Lecture 1: Graphs and their invariants: Families of graphs

A simple graph G is a pair (V (G ),E (G )) consisting of a finite set V (G ) of
vertices and a finite set E (G ) of edges, which are unordered pairs of
distinct vertices.
The two vertices forming an edge are called its ends.
The degree of a vertex is the number of edges for which it is an end.

A simple path of length ℓ in G is a sequence of pairwise distinct vertices
v0, v1, . . . , vℓ, vi ∈ V (G ), such that each pair of consecutive vertices
vi , vi+1 is an edge. A simple circuit of length ℓ is defined similarly, but
with the requirement vℓ = v0.
A graph is said to be connected if any two vertices in it are connected by a
path.
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Lecture 1: Graphs and their invariants: Families of graphs

Graphs are usually drawn on the plane, with vertices shown as points, and
edges with line or curve segments:

Figure: Pictures of two graphs
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Lecture 1: Graphs and their invariants: Families of graphs

Graphs having similar structure form graph families. We will widely use
the following families of graphs:

a graph is a tree if it is connected and has no circuits; if a graph has
no circuits, but is not necessarily connected, then it is a forest;

the cycle Cn is the graph consisting of a single circuit, of length n;

a graph is complete if any pair of vertices in it is connected by an
edge; the complete graph on n vertices is denoted Kn;

a graph G is said to be bipartite if there is a splitting
V (G ) = U1 ⊔ U2 of the set of its vertices into two disjoint parts such
that each edge connects a vertex from U1 to a vertex in U2;

a bipartite graph G is complete bipartite if each vertex in U1 is
connected to each vertex in U2; the complete bipartite graph with
parts of size m, n is denoted Km,n.
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Lecture 1: Graphs and their invariants: Families of graphs

A graph H = (V (H),E (H)) is a subgraph of a graph G = (V (G ),E (G ))
if V (H) ⊂ V (G ) and E (H) ⊂ E (G ).
For a graph G = (V (G ),E (G )) and a subset of its vertices I ⊂ V (G ), the
subgraph GI of G induced by I is the subgraph (I ,E (GI )), whose set of
edges E (GI ) consists of all edges in E (G ) whose both ends belong to I .

Obvious assertions:

any subgraph of a tree is a forest;

any induced subgraph of a complete graph is a complete graph;

any subgraph of a bipartite graph is a bipartite graph;

any induced subgraph of a complete bipartite graph is a complete
bipartite graph.

In this sense, the families we are considering are hereditary.

S. Lando (HSE Moscow) Invariants Hebei Normal University, China 7 / 17



Lecture 1: Graphs and their invariants: Families of graphs

A graph H = (V (H),E (H)) is a subgraph of a graph G = (V (G ),E (G ))
if V (H) ⊂ V (G ) and E (H) ⊂ E (G ).
For a graph G = (V (G ),E (G )) and a subset of its vertices I ⊂ V (G ), the
subgraph GI of G induced by I is the subgraph (I ,E (GI )), whose set of
edges E (GI ) consists of all edges in E (G ) whose both ends belong to I .
Obvious assertions:

any subgraph of a tree is a forest;

any induced subgraph of a complete graph is a complete graph;

any subgraph of a bipartite graph is a bipartite graph;

any induced subgraph of a complete bipartite graph is a complete
bipartite graph.

In this sense, the families we are considering are hereditary.

S. Lando (HSE Moscow) Invariants Hebei Normal University, China 7 / 17



Lecture 1: Graphs and their invariants: Families of graphs

A graph H = (V (H),E (H)) is a subgraph of a graph G = (V (G ),E (G ))
if V (H) ⊂ V (G ) and E (H) ⊂ E (G ).
For a graph G = (V (G ),E (G )) and a subset of its vertices I ⊂ V (G ), the
subgraph GI of G induced by I is the subgraph (I ,E (GI )), whose set of
edges E (GI ) consists of all edges in E (G ) whose both ends belong to I .
Obvious assertions:

any subgraph of a tree is a forest;

any induced subgraph of a complete graph is a complete graph;

any subgraph of a bipartite graph is a bipartite graph;

any induced subgraph of a complete bipartite graph is a complete
bipartite graph.

In this sense, the families we are considering are hereditary.

S. Lando (HSE Moscow) Invariants Hebei Normal University, China 7 / 17



Lecture 1: Graphs and their invariants: Graphs’
presentations

The most natural way to represent a graph G in a computer-friendly form
is to specify its set of vertices V (G ) and its set of edges E (G ), which is a
subset of the direct square V (G )× V (G ).

Another natural way is to number the vertices by the numbers 1, 2, . . . ,
|V (G )| and represent G by means of the adjacency matrix A(G ), which is
a symmetric square |V (G )| × |V (G )|-matrix whose entry akl ,
1 ≤ k , l ≤ |V (G )|, is 1 provided the vertices numbered k and l are
connected by an edge, and is 0 otherwise. In particular, the diagonal
elements of the adjacency matrix A(G ) of a simple graph G are zeroes.
One more way to encode a graph G is by means of its incidence matrix
I (G ). This is a rectangular |V (G )| × |E (G )|-matrix with entries 0 and 1,
whose entry ikl , 1 ≤ k ≤ |V (G )|, 1 ≤ l ≤ |E (G )|, is 1 if vertex number k
is an end of the edge number l and is 0 otherwise. To construct an
incidence matrix, one should number both vertices and edges of G .
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Lecture 1: Graphs and their invariants: Graph isomorphism

Two graphs G1,G2 are said to be isomorphic if there is a one-to-one
correspondence φ : V (G1) → V (G2) taking the edges of G1 to that of G2

such that the inverse map φ−1 takes the edges of G2 to that of G1. Such
φ is called an isomorphism between G1 and G2.

Finding whether two given graphs are isomorphic is one of the key
problems in studying graphs. Caution: Exhausting all one-to-one
mappings V (G1) → V (G2) and checking for each of them whether it is an
isomorphism is impractical already for graphs with as few as 30 vertices.
Presently, it is not known whether the graph isomorphism problem can be
solved by means of a polynomial algorithm.
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Lecture 1: Graphs and their invariants: Graph invariants

A function on graphs is called a graph invariant if it takes the same values
on any pair of isomorphic graphs.
Graph invariants are a useful tool to proving that two given graphs are not
isomorphic. They are also extensively used in studying graph properties.
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Lecture 1: Graphs and their invariants: Graph invariants

Examples of graph invariants:

number of vertices;

number of edges;

automorphism group;

chromatic number (minimal number of colors required to color the
vertices of a graph properly);

characteristic polynomial of the adjacency matrix;

length of the longest circuit;

length of the shortest circuit;

. . .

A graph invariant is good if it

can be computed relatively easily;

separates graphs well.
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Lecture 1: Graphs and their invariants: Chromatic function

Let χG (c) denote the graph invariant that counts the number of proper
colorings of the vertices of G into c colors. (A coloring
V (G ) → {1, 2, . . . , c} is proper if any two neighboring vertices of the
graph are taken to different colors.)

Obviously, the chromatic function is multiplicative: its value on the
disjoint union G1 ⊔ G2 of graphs is the product of its values on the
components, χG1⊔G2 = χG1χG2 . Therefore, it suffices to know the value of
χ on connected graphs.
The chromatic function on certain families of connected graphs:

if a graph G has a leaf (a vertex of degree 1), then let G ′ denote the
result of erasing the leaf from G ; we have χG (c) = (c − 1)χG ′(c);

the chromatic function of any tree Tn on n vertices is
χTn(c) = c(c − 1)n−1;

the chromatic function of the complete graph Kn on n vertices is
χKn(c) = c(c − 1)(c − 2) . . . (c − n + 1).
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Lecture 1: Graphs and their invariants: Chromatic function

A more complicated task is to compute the chromatic function of the cycle
C4 on 4 vertices.

Pick an edge e ∈ E (C4). Then we have

χC4(c) = χ(C4)′e
(c)− χ(C4)′′e

(c),

where (C4)
′
e is the result of deleting e and (C4)

′′
e is the result of

contracting e in C4. Indeed, all proper colorings of the vertices of the
graph (C4)

′
e split into two subsets: those in which the ends of e are

colored into two different colors, and those in which these two colors
coincide. The first subset is in one-to-one correspondence with the proper
colorings of C4, while the second subset corresponds one-to-one with the
set of proper colorings of the graph (C4)

′′
e . Since (C4)

′
e is a tree and (C4)

′′
e

is C3 = K3, we already know the corresponding chromatic functions.
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Lecture 1: Graphs and their invariants: Chromatic function

Theorem

Let G be a graph, and let e ∈ E (G ) be an arbitrary edge. Then

χG (c) = χG ′
e
(c)− χG ′′

e
(c),

where G ′
e is the result of erasing e, G ′′

e is the result of contracting e in G .

Corollary

For any graph G , the function χG (c) is a polynomial in c of degree
|V (G )|.
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Lecture 1: Graphs and their invariants: Problems

Prove that if a graph G with |V (G )| vertices has more than(
|V (G )| − 1

2

)
=

1

2
(|V (G )| − 1)(|V (G )| − 2)

edges, then it is connected.

Prove that a graph is bipartite if and only if any circuit in it has an
even length.

Let I (G ) denote the incidence matrix of a graph G . Prove that the
diagonal elements of the |V (G )| × |V (G )| matrix I (G )I (G )t , where
I (G )t is the transpose to I (G ), are the degrees of the vertices of G .

S. Lando (HSE Moscow) Invariants Hebei Normal University, China 15 / 17



Lecture 1: Graphs and their invariants: Problems

Compute the chromatic polynomial of the graphs a) K2,3, complete
bipartite graph with parts of size 2 and 3; a) K3,3, complete bipartite
graph with parts of size 3 and 3;

Find a formula for the chromatic polynomial of the cycle Cn,
n = 3, 4, 5, . . . ;

Prove that the chromatic polynomial possesses the following binomial
property:

χG (x + y) =
∑

I⊔J=V (G)

χG |I (x)χG |J (y),

where the summation is carried over all partitions of the set V (G ) of
vertices of G into two disjoint subsets I , J. Recall that G |I is the
subgraph of G induced by the subset I ⊂ V (G ).
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Thank you
for your attention
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