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Introduction

spreads ⊂ 𝜇-fold spreads ⊂ multispreads ⊂ 𝜇-fold space partitions

(𝜇-fold) spreads, or t-spreads — (multifold) partitions of the
vector space into t-subspaces;

multispreads — 𝜇-fold partitions of the vector space Fm
q into t-

multisubspaces (subspaces of different dimensions r ≤ t, counted
with multiplisity qt−r );

(multifold) space partitions — (multifold) partitions of the vector
space into subspaces of (possibly) different dimensions;

Motivation: correspondence between multispreads, additive intriguing
sets (completely regular codes with covering radius 1) in Hamming
graphs, and additive one-weight codes.
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Definition: intriguing sets

A set of vertices of a regular (Hamming) graph is called an
intriguing set (completely regular code of covering radius 1,
CR-1) with quotient matrix(︂

a b

c d

)︂
if every codeword is adjacent to a codewords and b non-codewords
and every non-codeword is adjacent to c codewords and d non-
codewords.

equivalent notions: equitable 2-partitions, perfect 2-colorings,
2-partition designs, . . .
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Notations from coding theory

Fn
q — the space of n-tuples (words) of elements of Fq = GF(q).

The weight of a word is the number of nonzero elements in it;
the Hamming distance between two words is the number of
positions in which they differ.
A subspace (linear code) or an additive subgroup (additive code)
of Fn

q is said to be a one-weight code if all non-zero codewords
have the same weight.
If q = pt , p prime, then additive codes are just Fp-linear codes
in Fn

q, where Fq is considered as t-dimensional vector space
over Fp.
Choosing any Fp-basis in Fq, we can represent Fn

q as (Ft
p)

n,
the set of words of length n over Ft

p,
or the set of words of length nt over Fp, where each word is
divided into n blocks of length t.
Important: the Hamming metric is still q-ary: when counting
the weight or the distance, we consider an element of Ft

p as one
symbol. Example (p = 2, q = 23 = 8): 000 001 110 000 111
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check matrix

Every subspace of Fnt
p can be represented by a generator matrix,

whose rows form basis.

Every subspace C of the space nt-words over Fp can be represented
as the null-space, null(M), of an (nt − dimC )× nt matrix M,
called a check matrix of the Fp-linear code C .

Since we consider the positions of nt-words as arranged into
blocks, the columns of a check matrix are also naturally grouped
into n groups.

H =

⎛⎝ 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0
1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0

⎞⎠
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Connection of one-weight codes and intriguing sets

Lemma

Assume that anm×nt matrixM over Fp is a generator matrix if the

code C and a check matrix of the code C⊥. C is a one-weight code

with weight w if and only if C⊥ is an intriguing set with quotient

matrix

(︂
· ·
𝜇 ·

)︂
, where w · pt−1 = 𝜇 · pm−1.



Treating a group T of columns in a check matrix

For a given finite multiset T of vectors, by ⟨⟨T ⟩⟩ we denote the
multiset

⟨⟨T ⟩⟩ :=
{︁∑︁

v∈T
avv : av ∈ Fp

}︁
of all q|T | linear combinations of elements from T .

Every such ⟨⟨T ⟩⟩ will be called a multisubspace, or t-multisubspace,
(of the vector space) with a “basis” T .

For a multisubspace S , we denote S* := S − {0}.
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Multispreads

We will call a collection (S1, . . . , Sn) of t-multisubspaces of Fm
p

a (𝜆, 𝜇)-multispread, or multispread, if there hold

S1 ⊎ . . . ⊎ Sn = (n + 𝜆)×{0} ⊎ 𝜇×Fm*
p .

or, equivalently,

S*
1 ⊎ . . . ⊎ S*

n = 𝜆×{0} ⊎ 𝜇×Fm*
p ,

where Si
* = Si − {0}.

(0, 𝜇)-multispreads are known as 𝜇-fold spreads
(in this case, Si are ordinary t-dimensional subspaces, without
multiplicity larger than 1);
in particular, (0, 1)-multispreads are spreads;
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Example: (1, 2)-multispread, F3
2, t = 2.

An example of a (1, 2)-multispread in F3
2 from four 2-subspaces

⟨⟨100, 010⟩⟩, ⟨⟨100, 001⟩⟩, ⟨⟨010, 001⟩⟩, ⟨⟨110, 011⟩⟩, and one
1-subspace ⟨⟨111, 000⟩⟩ (having multiplicity 2, as a multisubspace).

101

111

011110

010

100 001



Multispreads ↔ additive intriguing sets (CR-1)

Theorem

Assume M is an m × nt matrix over Fp with groups of columns

T1, . . . , Tn (each group has t columns). The code null(M) is an

Fp-linear intriguing set in the Hamming space H(n, q), q = pt , with

quotient matrix (︂
𝜆 n(q − 1)− 𝜆
𝜇 n(q − 1)− 𝜇

)︂
if and only if {⟨⟨T1⟩⟩, . . . , ⟨⟨Tn⟩⟩} is a (𝜆, 𝜇)-multispread, i.e.,

⟨⟨T1⟩⟩* ⊎ . . . ⊎ ⟨⟨Tn⟩⟩* = 𝜆×{0} ⊎ 𝜇×Fm*
p .

The famous Bonisoli theorem [1] that characterizes linear one-
weight codes corresponds to t = 1, i.e., q = p.

1Bonisoli, A. Every Equidistant Linear Code Is a Sequence of Dual Hamming
Codes, Ars Comb. 1984
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A necessary condition and Wrong conjecture

S*
1 ⊎ . . . ⊎ S*

n = 𝜆×{0} ⊎ 𝜇×Fm*
p ,

CONJECTURE. Assume that t ≤ m and p ≤ 𝜇. A (𝜆, 𝜇)-
multispread exists if and only if

𝜆+ 𝜇(pm − 1) is divisible by pt − 1;

that is, if and only if

𝜆 ≡ −𝜇(pm − 1) mod pt − 1.

This divisibility condition is necessary but (oops!) not sufficient.

Denote by 𝜆min = 𝜆min(p, t,m, 𝜇) the smallest nonnegative
integer 𝜆 satisfying the divisibility condition.
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The divisibility condition is NOT sufficient

Lemma (additional necessary condition for small 𝜇)

If a (𝜆, 𝜇)-multispread exists, then there is an integer n0 such that

𝜇
qm − 1

qt − 1
≤ n0 ≤ 𝜇

qm − 1

qt − qimx

where imx = min{⌊logq(𝜇)⌋, t − 1}.

Corollary

For any 𝜆, there are no (𝜆, 2)- and (𝜆, 3)-multispreads from 4-
multisubspaces of F5

2.



The divisibility condition is NOT sufficient: EXAMPLE

Corollary

For any 𝜆, there are no (𝜆, 2)- and (𝜆, 3)-multispreads from 4-
multisubspaces of F5

2.

Proof for 𝜇 = 3.

𝜆
mod pt−1
≡ −𝜇(pm − 1) = −3 · (25 − 1) = −93

mod 15≡ 12.

Since 𝜇 = 3 < 22, every 4-multisubspace from the multispread
has

rank 4 (contributes 0 to 𝜆), or
rank 3 (contributes 1 to 𝜆), or
rank 0 (contributes 15 to 𝜆).

We see that the multispread has at least 12 multisubspaces of
rank 3. They cover at least 12 · 14 = 168 nonzero points, which
is larger than 𝜇× |F5*

2 | = 3× 31 = 93, a contradiction.



Special case: t ≥ m

Theorem

A (𝜆, 𝜇)-multispread, t ≥ m exists if and only if 𝜇 is divisible by pt−m

and

𝜆 = 𝜆min + ℓ(pt − 1) = (pt−m − 1)
𝜇

pt−m
+ ℓ(pt − 1)

for some nonnegative integer ℓ.

Sufficiency. Take 𝜇/pt−m times the t-multisubspace that spans
the whole m-dimensional space and ℓ times the trivial t-multi-
subspace of rank-0.

Nessecity. Since the maximum rank of a multisubspace is m,
all multiplicities are divisible by pt−m. The remaining is the
divisibility condition



Special case: 𝜇 < p

Theorem

A (𝜆, 𝜇)-multispread such that 𝜇 < p exists if and only if 𝜇 is divisible

by pt−1

ps−1
, where s = gcd(t,m), and 𝜆 is divisible by pt − 1.

If 𝜇 < p, then a (𝜆, 𝜇)-multispread can only consist of multisubspaces
of rank 0 and t. Hence, the collection of t-subspaces forms
a 𝜇-fold spread, while the multisubspaces of rank 0 forms
a (𝜆=ℓ(pt−1), 0)-multispread (where ℓ is the number of 0-
subspaces).
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Basic constructions of multispreads

Lemma

If A and B are (𝜆, 𝜇)- and (𝜆′, 𝜇′)-multispreads from t-

multisubspaces of Fm
p , then A ⊎ B is a (𝜆+ 𝜆′, 𝜇+ 𝜇′)-multispread.



Basic constructions of multispreads

Lemma

If there is a (𝜆, 𝜇)-multispread from M t-multisubspaces of Fm
p ,

M = 𝜇(pm−1)+𝜆
pt−1

, then there is a (𝜆′, 𝜇′)-multispread from t ′-

multisubspaces of Fm′
p , where

(a) m′ = m, t ′ = t, 𝜆′ = 𝜆+ pt − 1, 𝜇′ = 𝜇;

(b) m′ = m, t ′ = t, 𝜆′ = 𝜆, 𝜇′ = 𝜇 + pt−1

ps−1
, where s =

gcd(t,m);

(c) m′ = m + t, t ′ = t, 𝜆′ = 𝜆, 𝜇′ = 𝜇;

(d) m′ = m − 1, t ′ = t, 𝜆′ = 𝜆+ (p − 1)𝜇, 𝜇′ = p𝜇;

(e) m′ = m, t ′ = t + 1, 𝜆′ = p𝜆+ (p − 1)M, 𝜇′ = p𝜇;

(f) p′ = p
1

s , m′=ms, t ′=ts, 𝜆′=𝜆, 𝜇′ = 𝜇, where p = p′s .



Basic constructions: increasing 𝜆

Lemma

If there is a (𝜆, 𝜇)-multispread from t-multisubspaces of Fm
p , then

there is a (𝜆′, 𝜇′)-multispread from t ′-multisubspaces of Fm′
p , where

(a) m′ = m, t ′ = t, 𝜆′ = 𝜆+ (pt−1), 𝜇′ = 𝜇;

Proof: It follows from the existence of a (pt − 1, 0)-multispread,
which consists of one t-multisubset of rank 0.



Basic constructions: increasing 𝜇

Lemma

If there is a (𝜆, 𝜇)-multispread from t-multisubspaces of Fm
p , t ≤ m,

then there is a (𝜆′, 𝜇′)-multispread from t ′-multisubspaces of Fm′
p ,

where

(b) m′ = m, t ′ = t, 𝜆′ = 𝜆, 𝜇′ = 𝜇+ pt−1

ps−1
, where s =

gcd(t,m);

Proof: It follows from the existence of a (0, p
t−1

ps−1
)-multispread

(known as pt−1

ps−1
-fold spread in the literature).



Basic constructions: increasing m

Lemma

If there is a (𝜆, 𝜇)-multispread from t-multisubspaces of Fm
p , t ≤ m,

then there is a (𝜆′, 𝜇′)-multispread from t ′-multisubspaces of Fm′
p ,

where

(c) m′ = m + t, t ′ = t, 𝜆′ = 𝜆, 𝜇′ = 𝜇;

Proof: Use a known partition of Fm′
p = Fm+t

p into an m-subspace
and t-subspaces [2]:

Let U be a t-subspace (over Fp) of Fpm .
Partition of Fpm × U ∼ Fm+t

p :

{(𝛼u|u) : u ∈ U} — t-subspace for each 𝛼 ∈ Fpm ;
{(v |0) : v ∈ Fpm} — m-subspace.

2T. Bu. Partitions of a vector space. Discrete Math., 31:79–83, 1980.



Basic constructions: projection

Lemma

If there is a (𝜆, 𝜇)-multispread from t-multisubspaces of Fm
p , then

there is a (𝜆′, 𝜇′)-multispread from t ′-multisubspaces of Fm′
p , where

(d) m′ = m − 1, t ′ = t, 𝜆′ = 𝜆+ (p − 1)𝜇, 𝜇′ = p𝜇.

Proof: Projection: Fm
p → Fm−1

p by removing the last component.

t-multisubspace of Fm
q −→ t-multisubspace of Fm−1

p .

Since the preimage of every non-zero vector in Fm−1
p is p non-

zero vectors in Fm
p , we get 𝜇′ = p𝜇.

Since the preimage of the zero vector in Fm−1
p is the zero vector

and p − 1 non-zero vectors in Fm
p , we get 𝜆′ = 𝜆+ (p − 1)𝜇.



Basic constructions: increasing t

Lemma

If there is a (𝜆, 𝜇)-multispread from M t-multisubspaces of Fm
p ,

M = 𝜇(pm−1)+𝜆
pt−1

, then there is a (𝜆′, 𝜇′)-multispread from t ′-

multisubspaces of Fm′
p , where

(e) m′ = m, t ′ = t + 1, 𝜆′ = p𝜆+ (p − 1)M, 𝜇′ = p𝜇;

Proof: (e) is obtained if we treat t-multisubspaces as
(t + 1)-multisubspaces, with the corresponding multiplicities of
vectors.



Basic constructions: treatment for subfield

Lemma

If there is a (𝜆, 𝜇)-multispread from t-multisubspaces of Fm
p and

p = p′s , then there is a (𝜆′, 𝜇′)-multispread from t ′-multisubspaces

of Fm′
p′ , where

(f) p′ = p1/s , m′ = ms, t ′ = ts, 𝜆′ = 𝜆, 𝜇′ = 𝜇.

Proof: treat Fk
p as Fsk

p′ .



Switching construction

By removing an (m−2)-dimensional subspace S and adding all p+1
(m−1)-dimensional subspaces including S , we keep the property of
being a multispread, but change the parameters:

(𝜆, 𝜇) → (𝜆−(p−1), 𝜇+1).

The inverse operation is also useful.



Special construction: from the Desarguesian spread in Fp6

Fp3 ⊂ Fp6 ; D̄ = {Fp3 , a1Fp3 , . . . , ap3Fp3} — a partition of Fp6 .

Let T be a 4-dimensional Fp-subspace of Fp6 that intersects
with p+1 subspaces from D̄ (call them D̄2

T ) in a 2-dimensional
subspace and the other p3−p subspaces from D̄ (call them D̄1

T )
in a 1-dimensional subspace.

D̄ itself is a (𝜆0, 𝜇 = p)-multispread, 𝜆0 = (p − 1)(p3 + 1);

OrbitF×
p3
(T ) ∪ (D̄ − D̄2

T ) is a (𝜆1, 𝜇 = p + 1)-multispread;

OrbitF×
p3
(T1) ∪OrbitF×

p3
(T2) ∪ (D̄ − D̄2

T1
− D̄2

T2
)

is a (𝜆2, 𝜇 = p + 2)-multispread if D̄2
T1

and D̄2
T2

are disjoint;

Collecting (p3 + 1)/(p + 1) such 4-subspaces Ti with mutually
disjoint D̄2

Ti
, we get (𝜆j , 𝜇 = p + j)-multispread for any j , with

minimum possible 𝜆.

Good T : the null-space of the Trace map Fp6 → Fp2 and its
multiplicative cosets.
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t = 2: p2-ary additive one-weight codes

Theorem

Conjecture holds for t = 2 and any m ≥ 2 (any p).

Sketch: It is sufficient to construct (𝜆min, 𝜇)-multispread for
m = 3 and 𝜇 ∈ {p, p + 1, . . . , 2p}.

(𝜆 = p−1, 𝜇 = p): the projection of a spread of F4

p
.

(𝜆 = 0, 𝜇 = p+1): multifold spread consisting of all 2-subspaces.
(𝜆 = 0, 𝜇 = 2p+2): multifold spread consisting of all 2-subspaces
with multiplicity 2.
(𝜆min, 𝜇 = 2p+2−i), i = 1, 2, ..., p: switching by replacing a
pencil of projective lines through a projective point x by x (we
need i such points, no 3 of them lying on one line).



t = 3: 8-, 27-ary additive one-weight codes

Theorem

Conjecture holds for t = 3 and any m ≡ 1 mod t (any p).

Sketch: Consider a spread of F4
p into p

2+1 subspaces of dimension 2.
If we treat 2-subspaces as 3-multisubspaces (basic construction
(e)), we get a (𝜆min = (p2+1)(p−1), 𝜇 = p)-multispread.
Then, by switching (replacing a multisubspace of rank 2 by p+1
multisubspace of rank 3) we increase 𝜇 one-by-step.

Theorem (involves computations for p=2, 𝜇=3 and p=3, 𝜇=4, 5)

Conjecture holds for t = 3 and any m ≡ 2 mod t, p = 2, 3.

Note that form ≡ 0 mod t, all parameters are solved by (ordinary)
t-spreads.
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t = 4: 16-ary additive one-weight codes

Theorem (special construction)

Conjecture holds for t = 4 and any m ≡ 2 mod 4 (any p).

Theorem (involves computations for (𝜆, 𝜇) = (9, 3))

Conjecture holds for t = 4 and any m ≡ 3 mod 4, p = 2.

Theorem (involves computations for 𝜇 ∈ {2, 3}, m = 9)

Conjecture holds for t = 4 and any m ≡ 1 mod 4, p = 2, except for
m = 5, 𝜇 ∈ {2, 3}.

In the last case, for 𝜇 ∈ {2, 3}, m = 5 conjecture fails, and
we needed to solve m = 5 + t = 9 (solved with computer and
prescribed Aut).



First problem for t=3, m=5 and in general for m=2t−1

1st open question: 𝜇 = p + 1, 𝜆 = (p2 + 1)(p − 1)

p 𝜆 𝜇 2-dim 3-dim comment

p (p2 + 1)(p − 1) p + 1 p2 + 1 p3 + 1

2 5 3 5 9 ∃, ILP 3

3 20 4 10 28 ∃, ILP 4

4 51 5 17 65 ?
5 104 6 26 126 ?

Problem: find pt−1+1 (t−1)-subspaces and pt+1 t-subspaces
of F2t−1

p (p prime power) such that each nonzero point belongs
to p + 1 chosen t-subspaces or to 1 chosen t-subspace and 1
chosen (t−1)-subspace.

Equivalent dual (see the next slide) problem : find pt−1+1 t-
subspaces and pt+1 (t − 1)-subspaces of F2t−1

p such that each
nonzero point belongs to exactly 2 chosen subspaces.

3max |Aut| = 6
4max |Aut| = 6 (Sascha Kurz, private communication)



Duality

Theorem (special case of [a])

a[S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, C. Vanden Eynden. On
𝜆-fold partitions of finite vector spaces and duality. Discrete Math., 2011]

A multiset S = {C1, . . . ,Cn} from t-multisubspaces of Fm
p is a

(𝜆, 𝜇)-multispread if and only if {C⊥
1 , . . . ,C⊥

n } is a 𝜈-fold partition

of Fm
p , where

𝜈 = n − pm−t𝜇

or, equivalently,

(pt − 1)𝜈 = (pm−t − 1)𝜇+ 𝜆.



Problems

Construct multispreads with new parameters (not necessarily
the first unsolved)

Characterize infinite sequences of parameters.

(difficult) Construct multispreads with given ranks of subspaces,
characterize admissible parameters (including the collection of
ranks).



NEW: Connection with mixed orthogonal arrays

(joint work with Ferruh Özbudak and Vladimir Potapov)

OA(M, q1 · q2 · . . . · qn, t) is code C in [q1]× [q2]× . . .× [qm]
such that fixing the values in any t different positions i1, i2, . . . ,
it we always get |C |

qi1qi2 ...qit
codewords.

Equivalently, it is an algebraic t-design (avoiding t largest nonmain
eigenvalues) in the multigraph

H = Q
q1
Kq1�

Q
q2
Kq2� · · ·� Q

qn
Kqn , where Q = l.c.m.(q1, ..., qn).
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Mixed OA attaining the generalized B.-F. bound

The generalized Bierbrouer–Friedman bound for algebraic t-
designs in arbitrary regular multigraph and for multigraph H

above:
|C |
|G |

≥ −𝜃t+1

𝜃0 − 𝜃t+1

|C |
q1q2...qn

≥ 1− (1− 1

q
)

n

t + 1

where q is the harmonic mean of all qi , i = 1, ..., n.

The algebraic designs satisfying the g. B.-F. bound above are ≡
independent intriguing sets.

Additive independent intriguing sets in H, where qi = pri correspond
to t-multispreads in Fm

p , where t = maxi ri
(ri are the ranks of the corresponding subspaces).
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\def\OMEGA{\Gamma}
\begin{frame}{Introduction}
spreads $ \subset $ $\mu$-fold spreads $ \subset $ {\bf multispreads} $ \subset $ $\mu$-fold space partitions
\begin{itemize}
 \item<2-> ($\mu$-fold) spreads, or $t$-spreads --- (multifold) partitions of the vector space into $t$-subspaces;
\item<3-> {\bf multispreads} --- $\mu$-fold partitions of the vector space $\FF_q^m$ into $t$-multisubspaces (subspaces of different dimensions $r\le t$, 
counted with multiplisity $q^{t-r}$);
\item<4-> (multifold) space partitions --- (multifold) partitions of the vector space into subspaces of (possibly) different dimensions;
\item<5-> \alert{Motivation}: correspondence between multispreads, additive \emph{intriguing sets} (completely regular codes with covering radius~$1$) in Hamming graphs, and  additive one-weight codes.
\end{itemize}
 
\end{frame}



\begin{frame}{OUTLINE}

\begin{itemize}
 \item definitions;
\item connection: multispreads, intriguing sets (CR-$1$), one-weight codes;
\item multispreads: necessary condition;
\item multispreads: simple special cases;
\item multispreads: constructions;
\item multispreads: characterized cases: \\
    corresponding to additive intriguing sets in\\ $H(n,p^2)$, $H(n,2^3)$, $H(n,2^4)$, $H(n,3^3)$;
\item duality

\end{itemize}
 
\end{frame}





\begin{frame}{\color{white}Definition: intriguing sets}

\begin{itemize}[<+->]
 \item \boldmath A set of vertices of a regular (Hamming) graph
 is called an \alert{intriguing set} (completely regular code
 of covering radius~$1$, CR-$1$)
 with \alert{quotient matrix}
 $$
 \param abcd
 $$
 if every codeword is adjacent to $a$ codewords
 and $b$ non-codewords and
  every non-codeword is adjacent to $c$ codewords
 and $d$ non-codewords.
 \item equivalent notions: equitable $2$-partitions, 
 perfect $2$-colorings, $2$-partition designs, \ldots
 \end{itemize}


\end{frame}





\begin{frame}{\color{white}Notations from coding theory}

\begin{itemize}[<+->]
 \item $\FF_q^n$ --- the space of $n$-tuples
 (words)
 of elements of~$\FF_q = \mathrm{GF}(q)$. 
 \item The \alert{weight} of a word
 is the number of nonzero elements in it;\\
 the Hamming \alert{distance} between two words 
 is the number of positions in which they differ.
 \item A subspace
 (\alert{linear code}) or an additive subgroup
 (\alert{additive code}) of~$\FF_q^n$ 
 is said to be a \alert{one-weight code} if all non-zero codewords have the same weight.
 \item If $q=p^t$, $p$ prime, then additive codes
 are just $\FF_p$-linear codes in $\FF_q^n$, where
 $\FF_q$ is considered as $t$-dimensional vector space
 over~$\FF_p$.
 \item Choosing \alert{any} $\FF_p$-basis in~$\FF_q$,
we can represent $\FF_q^n$ as~$(\FF_p^t)^n$,\\
the set of words of length~$n$ over~$\FF_p^t$,\\
or the set of words of length~$nt$ over~$\FF_p$, where
each word is divided into $n$ blocks of length~$t$.
\item \alert{Important:} the Hamming metric is still $q$-ary:
when counting the weight or the distance,
we consider an element of $\FF_p^t$ as one symbol.
Example ($p=2$, $q=2^3=8$):
$000\ \underline{001}\ \underline{110}\ 000\ \underline{111}$

\end{itemize}
\end{frame}


\begin{frame}{\color{white}check matrix}

\begin{itemize}[<+->]
 \item 
 Every subspace 
of $\GF{p}^{nt}$
can be represented by a \alert{generator matrix},
whose rows form basis.
 \item 
Every subspace $C$ of the space
$nt$-words over $\GF{p}$
can be represented as the null-space,
$\ker(M)$,
of an $(nt-\dim C) \times nt$
matrix $M$, 
called a 
\alert{check matrix} 
of the $\GF{p}$-linear code $C$.
 \item
Since we consider the positions
of $nt$-words as arranged into
blocks, the columns of a check
matrix are also naturally grouped
into $n$ groups.
$$
H=\left(
\begin{array}{c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c@{~~}c@{\,}c}
0 & 0  &  0 & 0  &  0 & 1  &  0 & 1  &  1 & 0  &  1 & 0  &  0 & 1  &  0 & 1  &  1 & 0  &  0 & 1  &  0 & 1  &    1 & 0  &   0 & 0  \cr
0 & 1  &  0 & 1  &  1 & 0  &  1 & 0  &  0 & 0  &  0 & 0  &  0 & 1  &  1 & 0  &  0 & 1  &  1 & 1  &  1 & 1  &    1 & 0  &   0 & 0  \cr
1 & 0  &  1 & 0  &  0 & 0  &  0 & 0  &  0 & 1  &  0 & 1  &  1 & 0  &  0 & 1  &  0 & 1  &  1 & 0  &  1 & 0  &    1 & 0  &   0 & 0  
\end{array}
\right)
$$
\end{itemize}


\end{frame}




\begin{frame}{\color{white}Connection of one-weight codes and intriguing sets} 
 \begin{lemma}
\boldmath
 Assume that an $m\times nt$ matrix $M$ over~$\GF{p}$
 is a generator matrix if the code~$C$ and 
 a check matrix of the code~$C^\perp$.
 $C$ is a one-weight code with weight~$w$
 if and only if $C^\perp$
 is an intriguing set with quotient matrix
 $\param{\cdot}{\cdot}{\mu}{\cdot}$,
 where $w\cdot p^{t-1} = \mu \cdot p^{m-1} $.
\end{lemma}

\end{frame}





\begin{frame}{Treating a group $T$ of columns in a check matrix}

\begin{itemize}[<+->]
 \item 
For a given finite multiset $T$ of vectors,
by \alert{$\mspan{T}$} we denote the multiset
$$\mspan{T}:= \Big \{\sum_{v \in T} a_v v:\ a_v\in \GF{p} \Big \} $$
of all $q^{|T|}$ linear combinations
of elements from~$T$.
 \item 
Every such $\mspan{T}$
will be called a
\alert{multisubspace},
or \alert{$t$-multisubspace},
(of the vector space)
with a ``basis''~$T$.
 \item 
 For a multisubspace $S$, we denote
 \alert{$S^* := S-\{0\}$}.
\end{itemize}
\end{frame}








\begin{frame}{\color{white}Multispreads}
\begin{itemize}[<+->]
 \item We will call a collection 
$(S_1$, \ldots,  $S_n)$ of $t$-multisubspaces
of   $\GF{p}^m$ 
a \alert{$(\lambda,\mu)$-multispread},
or \alert{multispread},
 if there hold
$$
{S_1} \uplus \ldots \uplus {S_n} 
=
(n+\lambda){\times} \{\0\}
 \uplus 
 \mu{\times} \GF{p}^{m*}.
$$
\item or, equivalently,
\begin{equation*}%\label{eq:lm}
S_1^* \uplus \ldots \uplus S_n^* 
=
\lambda{\times} \{\0\}
 \,\uplus \,
 \mu{\times} \GF{p}^{m*},
\end{equation*}
where $ {S_i}^*=S_i - \{\overline 0\} $.
\item
$(0,\mu)$-multispreads are known as 
\alert{$\mu$-fold spreads}\\ 
(in this case, 
$S_i$
are ordinary $t$-dimensional subspaces,
without multiplicity larger than $1$);\\
in particular,
$(0,1)$-multispreads are \alert{spreads};
\end{itemize}


\end{frame}




\begin{frame}{\color{white}Example: $(1,2)$-multispread, $\FF_2^3$, $t=2$.}

An example of a $(1,2)$-multispread in $\FF_2^3$ from four 
$2$-subspaces
$\mspan{100,010}$,
$\mspan{100,001}$,
$\mspan{010,001}$,
$\mspan{110,011}$, and one
$1$-subspace $\mspan{111,000}$ (having multiplicity~$2$, as a multisubspace).
\vspace{1em}

\centering
\begin{tikzpicture}[nd/.style={draw,circle,thick,fill=white,minimum size=10pt,inner sep=0pt,}]
\draw[very thick]  (0,0) -- (4,0);
\draw[very thick]  (0,0) -- (2,3.46);
\draw[very thick]  (2,3.46) -- (4,0);
\draw[very thick] (2,1.15) circle (1.15)  ;
% \filldraw(2,1.15) circle (0.2);
 \draw [dashed] (0,0) -- (3,1.75);
\draw [dashed] (4,0) -- (1,1.75);
\draw [dashed] (2,0) -- (2,3.46); 
\draw [] (2,0.20) node [anchor=south,fill=white, inner sep=2pt, outer sep=0pt] {101};
\draw (2.15,1.15) node [anchor=west,fill=white, inner sep=1pt, outer sep=0pt] {111};
\node[nd,fill=black] at (2,1.15){};
\node[nd] at (3,1.75){};\draw (3.1,1.75) node [anchor=west] {011};
\node[nd] at (1,1.75){};\draw (0.9,1.75) node [anchor=east] {110};
\node[nd] at (2,3.46){};\draw (2.1,3.46) node [anchor=west] {010};
\node[nd] at (0,0){}; \draw (-0.1,0) node [anchor=east] {100};
\node[nd] at (2,0){};
\node[nd] at (4,0){}; \draw (4.1,0) node [anchor=west] {001};
\end{tikzpicture}
\end{frame}




\begin{frame}{Multispreads $\leftrightarrow$ additive intriguing sets (CR-1)}

\begin{theorem}%\label{th:iff}
Assume $M$ is an $m\times nt$ matrix over $\FF_p$
with groups of columns $T_1$, \ldots, $T_n$ (each group has $t$ columns).
The code
$\ker(M)$
is an $\GF{p}$-linear intriguing set in the Hamming space $H(n,q)$, $q=p^t$, with quotient
matrix
$$ 
\left(
\begin{array}{cc}
\lambda  & n(q-1)-\lambda \\
\mu     & n(q-1)-\mu 
\end{array}
\right)
$$
if and only if  $\{\mspan{T_1} , \ldots , \mspan{T_n}\}$ 
is a $(\lambda,\mu)$-multispread, i.e.,
\begin{equation*} 
\Mspan{T_1} \uplus \ldots \uplus \Mspan{T_n} 
=
\lambda{\times} \{\0\}
 \uplus 
 \mu{\times} \GF{p}^{m*}.
\end{equation*}
% or, equivalently,
% $$ 
% \mspan{T_1} \uplus \ldots \uplus \mspan{T_n} 
% =
% (n+\lambda){\times} \{\0\}
%  \uplus 
%  \mu{\times} \GF{p}^{m*}.

\end{theorem}
\begin{itemize}
 \item<2-> The famous Bonisoli theorem
 [\footnote{
  Bonisoli, A. Every Equidistant Linear Code Is a Sequence of Dual {H}amming Codes,
  Ars Comb. 1984}%
  ] that characterizes linear one-weight codes corresponds to $t=1$, i.e., $q=p$.
\end{itemize}


\end{frame}





 \begin{frame}{\color{white} A necessary condition and Wrong conjecture}
 
 \begin{equation*} 
S_1^* \uplus \ldots \uplus S_n^* 
=
\lambda{\times} \{\0\}
 \,\uplus \,
 \mu{\times} \GF{p}^{m*},
\end{equation*}

\begin{itemize}[<+->]
 \item CONJECTURE.
Assume  that $t \le m$ and $p\leq \mu$.
    A $(\lambda,\mu)$-multispread 
    exists if and only if 
    $$\lambda+\mu(p^m-1) \text{ is divisible by $p^t-1$;}$$
    that is, if and only if
    \begin{equation*} 
    \lambda \equiv -\mu(p^m-1) \bmod p^t-1.
    \end{equation*}
 \item This \alert{divisibility condition} is \underline{necessary} but (oops!) \underline{not sufficient}.
 \item Denote by $\alert{\lambda_{\min}} = \lambda_{\min} (p,t,m,\mu)$ the smallest nonnegative integer $\lambda$ satisfying the divisibility condition.
\end{itemize}


% \alert{Maybe add that there are nonnegative integers $b_0,\ldots,b_t$ ($b_i$ is number of $i$-subspaces  in a multispread) such that 
% $\lambda=\sum\limits_{i=0,\ldots,t}  b_i(q^{t-i}-1)$ and $\mu=\frac{\sum\limits_{i=0,\ldots,t} b_iq^{t-i}(q^i-1)}{q^m-1}$ }
 
\end{frame}





 
  \begin{frame}{\color{white} The divisibility condition is NOT sufficient}
\begin{lemma}[additional necessary condition for small $\mu$]\label{p:ness-}
If a $({\lambda},{\mu})$-multispread exists,
then there is an integer $n_0$ such that
$$
\mu \frac{q^m-1}{q^t-1}\le n_0 \le \mu \frac{q^m-1}{q^t-q^{i_{\mathrm{mx}}}}
$$
where  ${i_{\mathrm{mx}}}={\min\{\lfloor\log_q(\mu)\rfloor,t-1\}} $.
\end{lemma}
\begin{corollary}
 For any $\lambda$,
 there are no
 $({\lambda},{2})$- and
 $({\lambda},{3})$-multispreads from $4$-multisubspaces of $\FF_2^5$.
 \end{corollary}
\end{frame}

 
  \begin{frame}{\color{white} The divisibility condition is NOT sufficient: EXAMPLE}
\begin{corollary}
 For any $\lambda$,
 there are no
 $({\lambda},{2})$- and
 $({\lambda},{3})$-multispreads from $4$-multisubspaces of $\FF_2^5$.
 \end{corollary}
 \begin{itemize}
  \item \alert{Proof for $\mu=3$}. 
  $$\lambda \stackrel{\mod p^t{-}1}\equiv - \mu (p^m -1) = - 3\cdot (2^5-1) = -93 
  \stackrel{\mod 15}\equiv 12.$$
  
%   So, $\lambda_{\min} = 12$.
  
  Since $\mu = 3 < 2^2$, every $4$-multisubspace from the multispread has
  \begin{itemize}
   \item rank $4$ (contributes $0$ to $\lambda$), or
   \item rank $3$ (contributes $1$ to $\lambda$), or
   \item rank $0$ (contributes $15$ to $\lambda$).
  \end{itemize}
  We see that the multispread has at least $12$  multisubspaces of rank $3$.
  They cover at least $12\cdot 14 = 168$ nonzero points,
  which is larger than $\mu \times |\FF_2^{5*}| = 3\times 31=93$, a contradiction.
 \end{itemize}

\end{frame}
 
 
 


\begin{frame}{\color{white}Special case: $t\ge m$}

\begin{theorem}%\label{p:t>m}
 A $(\lambda,\mu)$-multispread, $t\ge  m$ 
exists if and only if
$\mu$ is divisible by~$p^{t-m}$
and 
\begin{equation*}
  \lambda
  = \lambda_{\min}+\ell(p^t-1)  
  = (p^{t-m}-1)\frac{\mu}{p^{t-m}}+\ell(p^t-1)  
\end{equation*}
for some nonnegative integer~$\ell$.
\end{theorem}

\begin{itemize}
 \item 
\emph{Sufficiency.} Take $\mu/p^{t-m}$ times
the $t$-multisubspace
that spans the whole $m$-dimensional space
and $\ell$ times the trivial $t$-multi\-sub\-space
of rank-$0$. 
\item 
\emph{Nessecity.} Since the maximum rank of a multisubspace is $m$,
all multiplicities are divisible by~$p^{t-m}$. The remaining is the divisibility condition
\end{itemize}


\end{frame}
 
\begin{frame}{\color{white}Special case:  $\mu<p$}
\begin{theorem}%\label{p:mu<q}
    A $(\lambda,\mu)$-multispread 
    such that $\mu<p$
    exists if and only if
    $\mu$ is divisible by
    $\frac{p^t-1}{p^s-1}$, where 
    $s = \gcd(t,m)$,
    and $\lambda$ is divisible 
    by $p^t-1$.
\end{theorem}
\begin{itemize}
 \item <2->
 If $\mu<p$,
 then a $(\lambda,\mu)$-multispread 
 can only consist of multisubspaces
 of rank  $0$ and $t$. 
%  Indeed, a subspace of any other dimension
%  contains a nonzero vector of multiplicity at least~$p$, i.e. larger than~$\mu$, $\mu<p$.
Hence, the collection of 
$t$-subspaces forms 
a ~$\mu$-fold spread% (discussed in Lemma~\ref{l:fold})%
,
while the multisubspaces of rank~$0$ forms 
a~$(\lambda{=}\ell(p^t{-}1),\,0)$-multispread
(where $\ell$ is the number of $0$-subspaces).
\end{itemize}
\end{frame}





\begin{frame}{\color{white} Basic constructions of multispreads}
\begin{lemma}% \label{l+}\label{l:+}
    If $A$ and $B$ are $(\lambda,\mu)$- and
    $(\lambda',\mu')$-multispreads 
    from $t$-multisubspaces of $\FF_p^{m}$,
    then $A\uplus B$ is a
    $(\lambda+\lambda',\mu+\mu')$-multispread.
\end{lemma}
\end{frame}


\begin{frame}{\color{white} Basic constructions of multispreads}
\begin{lemma}
    If there is a $(\lambda,\mu)$-multispread 
    from $M$ $t$-multisubspaces of $\FF_p^{m}$,
    $M=\frac{\mu(p^m-1)+\lambda}{p^t-1}$,
    then there is a $(\lambda',\mu')$-multispread 
    from $t'$-multisubspaces of $\FF_p^{m'}$,
    where
\begin{itemize}
\item[\rm (a)] 
     $m'=m$,\quad
     $t'=t$,\quad
    \alert{$\lambda'=\lambda+p^t-1$},\quad
     $\mu'=\mu;$
\item[\rm (b)] 
     $m'=m$,\quad 
     $t'=t$,\quad
     $\lambda'=\lambda$,\quad
    \alert{$\mu'=\mu+\frac{p^t-1}{p^s-1}$}, 
    where $s=\gcd(t,m)$;
\item[\rm (c)] 
    \alert{$m'=m+t$},\quad 
     $t'=t$,\quad
     $\lambda'=\lambda$,\quad
     $\mu'=\mu$;
\item[\rm (d)]  
    \alert{$m'=m-1$},\quad
     $t'=t$,\quad
    \alert{$\lambda'=\lambda+(p-1)\mu$},\quad
    \alert{$\mu'=p\mu$};
\item[\rm (e)]  
     $m'=m$,\quad
    \alert{$t'=t+1$},\quad 
    \alert{$\lambda'=p\lambda+(p-1)M$},\quad
    \alert{$\mu'=p\mu$};
\item[\rm (f)]  
    \alert{$p'=p^{\frac{1}{s}}$},\quad 
     \alert{$m'{=}ms$},\quad
    \alert{$t'{=}ts$},\quad 
    $\lambda'{=}\lambda$,\quad
    {$\mu'=\mu$}, where $p={p'}^s$.
\end{itemize}
\end{lemma}

\end{frame}













\begin{frame}{\color{white} Basic constructions: increasing $\lambda$}



\begin{lemma}
    If there is a $(\lambda,\mu)$-multispread 
    from $t$-multisubspaces of $\FF_p^{m}$, 
    then there is a $(\lambda',\mu')$-multispread 
    from $t'$-multisubspaces of $\FF_p^{m'}$,
    where
\begin{itemize}
\item[\rm (a)] 
    $m'=m$,\quad
    $t'=t$,\quad
    \underline{$\lambda'=\lambda+(p^t{-1})$},\quad
    $\mu'=\mu;$
\end{itemize}
\end{lemma}

Proof: It follows from the existence of a $(p^t-1,0)$-multispread,
which consists of one $t$-multisubset of rank~$0$.

\end{frame}



\begin{frame}{\color{white}  Basic constructions: increasing $\mu$}


\begin{lemma}
    If there is a $(\lambda,\mu)$-multispread 
    from $t$-multisubspaces of $\FF_p^{m}$, $t\le m$,
    then there is a $(\lambda',\mu')$-multispread
    from $t'$-multisubspaces of $\FF_p^{m'}$,
    where
\begin{itemize}
\item[\rm (b)] 
    $m'=m$,\quad 
    $t'=t$,\quad
    $\lambda'=\lambda$,\quad
    \underline{$\mu'=\mu+\frac{p^t-1}{p^s-1}$}, 
    where $s=\gcd(t,m);$
\end{itemize}
\end{lemma}

Proof: It follows from the existence of a $(0,\frac{p^t-1}{p^s-1})$-multispread
(known as $\frac{p^t-1}{p^s-1}$-fold spread in the literature).

\end{frame}






% 
% \begin{frame}{\color{white} multifold spreads}
% 
% \begin{lemma}[on multifold spreads]
% \label{l:fold}
%     A $(0,\mu)$-multispread 
%     (i.e., a $\mu$-fold spread)
%     from $t$-multisubspaces 
%     of $\FF_q^m$ exists if and only if 
%     $t\le m$ and
%     $\mu$ is divisible by
%     $\frac{q^t-1}{q^s-1}$, where 
%     $s = \gcd(t,m)$.    
% \end{lemma}
% 
% \emph{If.} It is sufficient 
% to construct 
% a $\mu$-fold spread for $\mu = \frac{q^t-1}{q^s-1}$.
% Denote $s = \gcd(t,m)$, 
% $T=t/s$, $M=m/s$,
% $Q=q^s$.
% We consider an arbitrary
% $T$-dimensional subspace~$C$ of~$\FF_Q^M$
% (it exists because $t\le m$ and hence $T\le M$)
% and a complete system 
% $\bar\alpha =\{\alpha_1,\ldots,\alpha_{\frac{Q^M-1}{Q-1}}\}$ of mutually independent representatives of $\FF_Q^M$.
% It is easy to see that 
% $\bar C =\{\alpha_1C,\ldots,\alpha_{\frac{Q^M-1}{Q-1}}C\}$ is a $\frac{Q^T-1}{Q-1}$-fold
% spread of $\FF_Q^M$. It remains to note
% that $\frac{Q^T-1}{Q-1}=\frac{q^t-1}{q^s-1}$, $\FF_Q^M$ is an $m$-dimensional
% $\FF_q$-space, and $C$ (as well as all elements of $\bar C$)
% is its $t$-dimensional
% $\FF_q$-subspace.
% 
% \end{frame}







\begin{frame}{\color{white} Basic constructions:
increasing $m$}



\begin{lemma}
    If there is a $(\lambda,\mu)$-multispread 
    from $t$-multisubspaces of $\FF_p^{m}$, $t\le m$,
    then there is a $(\lambda',\mu')$-multispread 
    from $t'$-multisubspaces of $\FF_p^{m'}$,
    where
\begin{itemize}
\item[\rm (c)] 
    \underline{$m'=m+t$},\quad 
    $t'=t$,\quad
    $\lambda'=\lambda$,\quad
    $\mu'=\mu;$
\end{itemize}
\end{lemma}
\emph{Proof}: Use a known partition
of $\FF_p^{m'}=\FF_p^{m+t}$ into an $m$-subspace and $t$-subspaces [\footnote{T. Bu. Partitions of a vector space. Discrete Math., 31:79–83, 1980.}]:

\begin{itemize}
 \item 
 Let $U$ be a $t$-subspace (over $\FF_p$) of  $\FF_{p^m}$. \\
 Partition of $\FF_{p^m} \times U \sim \FF_p^{m+t}$:
\begin{itemize}
 \item $\{ (\alpha u| u) : u \in U \}$ --- $t$-subspace for each $\alpha \in\FF_{p^m}$; 
 \item $\{(v|{\bf 0}):v \in \FF_{p^m}\}$ --- $m$-subspace.
\end{itemize}
\end{itemize}


\end{frame}










\begin{frame}{\color{white} Basic constructions: projection}



\begin{lemma}
    If there is a $(\lambda,\mu)$-multispread 
    from $t$-multisubspaces of $\FF_p^{m}$,
    then there is a $(\lambda',\mu')$-multispread 
    from $t'$-multisubspaces of $\FF_p^{m'}$,
    where
\begin{itemize}
\item[\rm (d)]  
    \underline{$m'=m-1$},\quad
    $t'=t$,\quad
    \underline{$\lambda'=\lambda+(p-1)\mu$},\quad
    \underline{$\mu'=p\mu$}.
\end{itemize}
\end{lemma}
\emph{Proof}: \alert{Projection}: $\FF_p^m \to \FF_p^{m-1}$ 
by removing the last component.
\begin{itemize}
 \item $t$-multisubspace
 of~$\FF_q^m$ $\longrightarrow$ $t$-multisubspace of~$\FF_p^{m-1}$.
 \item Since the preimage of every non-zero vector
 in~$\FF_p^{m-1}$ is $p$ non-zero vectors in~$\FF_p^{m}$, we get
        \underline{$\mu'=p\mu$}.
        \item Since the preimage of the zero vector
 in~$\FF_p^{m-1}$ is the zero vector and $p-1$ non-zero vectors in~$\FF_p^{m}$, we get
\underline{$\lambda'=\lambda+(p-1)\mu$}.
\end{itemize}


 
 

\end{frame}











\begin{frame}{\color{white} Basic constructions: increasing $t$}



\begin{lemma}
    If there is a $(\lambda,\mu)$-multispread 
    from $M$ $t$-multisubspaces of $\FF_p^{m}$,
    $M=\frac{\mu(p^m-1)+\lambda}{p^t-1}$,
    then there is a $(\lambda',\mu')$-multispread 
    from $t'$-multisubspaces of $\FF_p^{m'}$,
    where
\begin{itemize}
\item[\rm (e)]  
    $m'=m$,\quad
    $t'=t+1$,\quad 
    $\lambda'=p\lambda+(p-1)M$,\quad
    $\mu'=p\mu;$
\end{itemize}
\end{lemma}

\emph{Proof}: (e) is obtained if we treat
     $t$-multisubspaces
     as $(t+1)$-multisubspaces,
     with the corresponding
     multiplicities of vectors.
\end{frame}







\begin{frame}{\color{white} Basic constructions: treatment for subfield}
\begin{lemma}
    If there is a $(\lambda,\mu)$-multispread 
    from $t$-multisubspaces of $\FF_p^{m}$
    and $p={p'}^s$,
    then there is a $(\lambda',\mu')$-multispread 
    from $t'$-multisubspaces of $\FF_{p'}^{m'}$,
    where
\begin{itemize}
\item[\rm (f)]  
    \alert{$p'=p^{1/s}$},\quad 
     \alert{$m'=ms$},\quad
    \alert{$t'=ts$},\quad 
    $\lambda'=\lambda$,\quad
    {$\mu'=\mu$}.
\end{itemize}
\end{lemma}
Proof: treat $\FF_p^k$ as $\FF_{p'}^{sk}$.
\end{frame}












\begin{frame}{\color{white}Switching construction}
By removing an $(m{-}2)$-dimensional subspace~$S$ and adding 
all $p{+}1$ $(m{-}1)$-dimensional subspaces 
including~$S$, we keep the property 
of being a multispread,
but change the parameters:
$$ (\lambda,\mu)\ \ \to\ \  (\lambda{-}(p{-}1),\,\mu{+}1). $$
The inverse operation is also useful.

\centering
\begin{tikzpicture}[nd/.style={draw,circle,thick,fill=white,minimum size=10pt,inner sep=0pt,}]
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\end{tikzpicture}
%
\end{frame}



\begin{frame}{\color{white} Special construction: from the Desarguesian spread in $\mathbb{F}_{p^6}$}
\begin{itemize}[<+->]
\item
$\mathbb{F}_{p^3}\subset \mathbb{F}_{p^6}$;
$\bar D =\{\mathbb{F}_{p^3},a_1\mathbb{F}_{p^3},\ldots,a_{p^3}\mathbb{F}_{p^3}\}$ --- a partition of $ \mathbb{F}_{p^6}$.
 \item Let $T$ be a $4$-dimensional
$\mathbb{F}_{p}$-subspace 
of $\mathbb{F}_{p^6}$ that intersects with $p+1$ subspaces from~$\bar D$ (call them $\bar D_T^{2}$) in a $2$-dimensional subspace and the other $p^3-p$
subspaces from~$\bar D$ (call them $\bar D_T^{1}$) in a $1$-dimensional subspace.
\item $\bar D$ itself is a $(\lambda_0,\mu=p)$-multispread, $\lambda_0=(p-1)(p^3+1)$;
\item $\mathrm{Orbit}_{\mathbb{F}_{p^3}^\times}( T) \cup (\bar D-\bar D_T^2)$ is a $(\lambda_1,\mu=p+1)$-multispread;
\item $\mathrm{Orbit}_{\mathbb{F}_{p^3}^\times} (T_1) \cup \mathrm{Orbit}_{\mathbb{F}_{p^3}^\times} (T_2) \cup (\bar D-\bar D_{T_1}^2-\bar D_{T_2}^2)$\newline is a $(\lambda_2,\mu=p+2)$-multispread if 
$\bar D_{T_1}^2$ and $\bar D_{T_2}^2$ are disjoint;
\item Collecting $(p^3+1)/(p+1)$ such $4$-subspaces $T_i$ with mutually disjoint $\bar D_{T_i}^2$, we get 
$(\lambda_j,\mu = p+j)$-multispread
for any~$j$, with minimum possible $\lambda$.
\item Good $T$: the null-space of the Trace map 
$\mathbb{F}_{p^6}\to \mathbb{F}_{p^2}$ and its multiplicative cosets.
\end{itemize}

\end{frame}

 
\begin{frame}{$t=2$: \ $p^2$-ary additive one-weight codes}
\begin{theorem}
Conjecture   holds for $t=2$ and any $m\geq 2$ (\alert{any $p$}).
\end{theorem}

\begin{itemize}
 \item \emph{Sketch:}
 It is sufficient to construct $(\lambda_{\min},\mu)$-multispread for $m=3$ and $\mu\in \{p,p+1,\ldots,2 p\}$.
 \begin{itemize}
 \item  $(\lambda = p{-}1,\mu = p)$: the projection of a spread of $\FF_p^4$.
 
 \item $(\lambda = 0,\mu = p+1)$: multifold spread consisting 
 of all $2$-subspaces.
 

 \item $(\lambda = 0,\mu = 2p{+}2)$: multifold spread consisting 
 of all $2$-subspaces with multiplicity~$2$.
 
 \item $(\lambda_{\min},\mu = 2p{+}2{-}i)$, $i=1,2,...,p$: 
 switching by replacing a pencil of projective lines through 
 a projective point $x$ by $x$ (we need $i$ such points, no $3$ of them lying on one line).
\end{itemize}
\end{itemize}


\end{frame}





 
\begin{frame}{$t=3$: \ $8$-, $27$-ary additive one-weight codes}
\begin{theorem}
Conjecture   holds for $t=3$ and any $m\equiv 1\bmod t$ (\alert{any $p$}). 
\end{theorem}
\begin{itemize}
 \item \emph{Sketch:}
 Consider a spread of $\FF_p^4$ into $p^2+1$ subspaces of dimension~$2$. If we treat
 $2$-subspaces as $3$-multisubspaces (basic construction \alert{(e)}),
 we get a $(\lambda_{\min}=(p^2{+}1)(p{-}1),\,\mu = p)$-multispread.
 
 Then, by switching (replacing a multisubspace of rank $2$ by $p+1$ multisubspace of rank $3$) we increase $\mu$ one-by-step.
\end{itemize}

\begin{theorem}[involves computations for $p{=}2$, $\mu{=}3$ and $p{=}3$, $\mu{=}4,5$]<2->
Conjecture   holds for $t=3$ and any $m\equiv 2\bmod t$, \alert{$p=2,3$}. 
\end{theorem}

\begin{itemize}
 \item<3-> Note that for $m\equiv 0 \bmod t$, all parameters are solved by (ordinary) $t$-spreads.
\end{itemize}
\end{frame}





 
 
 
 
\begin{frame}{$t=4$: \ $16$-ary additive one-weight codes}
\begin{theorem}[special construction]
Conjecture holds for $t=4$ and any $m\equiv 2\bmod 4$ (\alert{any $p$}). 
\end{theorem}
\begin{theorem}[involves computations for $(\lambda,\mu)=(9,3)$]
Conjecture   holds for $t=4$ and any $m\equiv 3\bmod 4$, \alert{$p=2$}. 
\end{theorem}

\begin{theorem}[involves computations for $\mu\in\{2,3\}$, $m=9$]
Conjecture holds for $t=4$ and any $m\equiv 1\bmod 4$, \alert{$p=2$}, except for
$m=5$, $\mu\in\{2,3\}$.
\end{theorem}
\begin{itemize}
 \item
 In the last case, for $\mu\in\{2,3\}$, $m=5$ \alert{conjecture fails}, 
 and we needed to solve $m=5+t=9$ (solved with computer and prescribed Aut).
\end{itemize}
\end{frame}





 
 
 
\begin{frame}{\color{white}First problem for $t{=}3$, $m{=}5$ and in general for $m{=}2t{-}1$}
 $1$st open question: 
$\mu=p+1$, $\lambda=(p^2+1)(p-1)$ 
\vspace{-3mm}
$$
\begin{tabular}{c|cc|cc|l}
\hline
$p$ & $\lambda$ & $\mu$ 
& $2$-dim & $3$-dim 
& comment 
\\\hline
$p$ & $(p^2+1)(p-1)$&$p+1$ 
& $p^2+1$ & $p^3+1$ & 
\\\hline
$2$ & $5$ & $3$ & $5$ & $9$ & $\exists$, ILP
\footnote{$\max |\mathrm{Aut}|=6$}
\\
$3$ & $20$ & $4$ & $10$ & $28$& $\exists$, ILP 
\footnote{$\max |\mathrm{Aut}|=6$
(Sascha Kurz, private communication)}
\\
$4$ & $51$ & $5$ & $17$ & $65$ & ?\\
$5$ & $104$ & $6$ & $26$ & $126$ & ? \\
\hline
\end{tabular}
$$
\vspace{-5mm}
\begin{itemize}
    \item \underline{\emph{Problem}}: find
    \alert{$p^{t-1}{+}1$ $(t{-}1)$-subspaces} and 
    \alert{$p^t{+}1$ $t$-subspaces} 
    of $\FF_{p}^{2t-1}$ ($p$ prime power)
    such that each nonzero point belongs
    to $p+1$ chosen $t$-subspaces
    or to $1$ chosen $t$-subspace
    and $1$ chosen $(t{-}1)$-subspace.
    \item \emph{\underline{Equivalent} dual {\rm (see the next slide)} \underline{problem}} : find
    \alert{$p^{t-1}{+}1$ $t$-subspaces} and 
    \alert{$p^t{+}1$ $(t-1)$-subspaces} 
    of $\FF_{p}^{2t-1}$
    such that each nonzero point belongs
    to exactly $2$ chosen subspaces.
\end{itemize}
\end{frame}
 
 
%\begin{frame}{\color{white}$t=3$, $m=5$}
% $2$nd open question: $\mu=p+2$, $\lambda=(p^2-p)(p-1)$.
% \medskip
 
%\begin{tabular}{c|cc|cc|l}
%\hline
%$p$ & $\lambda$ & $\mu$ 
%& $2$-dim & $3$-dim 
%& comment 
%\\\hline
%$p$ & $(p^2{-}p)(p{-}1)$&$p+2$ 
%& $p^2{-}p$ & $p^3{+}p^2{+}p{+}2$ & 
%\\\hline
%$2$ & $2$ & $4$ & $2$ & $16$ & $\exists$, $2{\times}(\lambda{=}1,\mu{=}2)$ \\
%$3$ & $12$ & $5$ & $6$ & $41$ & $\exists$, ILP \\
%$4$ & $36$ & $6$ & $12$ & $86$ & \\ 
%$5$ & $80$ & $7$ & $20$ & $157$ & \\ 
%\hline
%\end{tabular}

%\end{frame}
 
  
%\begin{frame}{\color{white}$t=3$, $m=5$}
 
%$3$d open question: $\mu=p+3$, $\lambda=(p^2-2p-1)(p-1)$; optimal if $p\ge 3$.
 %\medskip
 
%\begin{tabular}{c|cc|cc|l}
%\hline
%$p$ & $\lambda$ & $\mu$ 
%& $2$-dim & $3$-dim 
%& comment 
%\\\hline
%$p$ & $(p^2{-}2p{-}1)(p{-}1)$&$p{+}3$ 
%& $p^2{-}2p{-}1$ & $p^3 {+} 2p^2 {+} 2p {+} 3 $ & 
%\\\hline
%$3$ & $4$ & $6$ & $2$ & $54$ & $\exists$, ILP\\
%$4$ & $21$ & $7$ & $7$ & $107$ & \\ 
%$5$ & $56$ & $8$ & $14$ & $188$ & \\ 
%\hline
%\end{tabular}

%\end{frame}

 
\begin{frame}{Duality}
\begin{theorem}[special case of {[\footnote{\color{white}[S. El-Zanati, G. Seelinger, P. Sissokho, L.~Spence, 
C. Vanden Eynden. On $\lambda$-fold partitions of finite vector
spaces and duality. Discrete Math., 2011]}]}]
A multiset
$S=\{C_1,\ldots,C_n\}$
from $t$-multisubspaces of~$\FF_p^m$ 
is a $({\lambda},{\mu})$-multispread if and only if 
% $\lambda + \mu(p^m-1) = n(p^t-1)$ and % a bit incorrect simplification
$\{C_1^\perp,\ldots,C_n^\perp\}$
is a $\nu$-fold partition of~$\FF_p^m$, where
\begin{equation*} 
    \nu = n-p^{m-t}\mu 
\end{equation*}
or, equivalently,
\begin{equation*} 
 (p^t-1) \nu = {(p^{m-t}-1) \mu+\lambda}.
\end{equation*}
\end{theorem}
\end{frame}

 
\begin{frame}{Problems}
\begin{itemize}
 \item Construct multispreads with new parameters (not necessarily the first unsolved)
 \item Characterize infinite sequences of parameters.
 \item (difficult) Construct multispreads with given ranks of subspaces, characterize admissible parameters (including the collection of ranks).
\end{itemize}
\end{frame}

 
\begin{frame}{NEW: Connection with mixed orthogonal arrays}

(joint work with Ferruh \"Ozbudak and Vladimir Potapov)
\begin{itemize}[<+->]
 \item 
OA$(M, q_1\cdot q_2\cdot \ldots \cdot q_n, t)$
is code $C$ in $[q_1]\times[q_2]\times \ldots \times[q_m]$
such that fixing the values in any $t$ different positions
$i_1$, $i_2$, \ldots, $i_t$ we always get 
$\frac{|C|}{q_{i_1}q_{i_2}...q_{i_t}}$ codewords.
\item Equivalently, it is 
an algebraic $t$-design (avoiding $t$ largest nonmain eigenvalues) in the multigraph
$$\textstyle H = \frac{Q}{q_1}K_{q_1} 
\square \frac{Q}{q_2}K_{q_2} 
\square \cdots 
\square \frac{Q}{q_n}K_{q_n} ,
\quad
\text{where $Q = \mathrm{l.c.m.}(q_1,...,q_n).$}$$
\end{itemize}
\end{frame}

\begin{frame}{Mixed OA attaining the generalized B.-F. bound}
\begin{itemize}[<+->]
\item The generalized Bierbrouer--Friedman bound
for algebraic $t$-designs in arbitrary regular multigraph 
and for multigraph $H$ above:
$$ \frac{|C|}{|G|} \ge \frac{-\theta_{t+1}}{\theta_0-\theta_{t+1}}$$ 

$$ \frac{|C|}{q_1q_2...q_n} \ge 1 - (1-\frac{1}{q})\frac{n}{t+1} $$
where $q$ is the harmonic mean of all $q_i$, $i=1,...,n$.
\item
The algebraic designs satisfying the g. B.-F. bound above
are $\equiv$ independent intriguing sets.
\item
Additive independent intriguing sets in~$H$, where $q_i = p^{r_i}$ correspond to $t$-multispreads in $\FF_p^m$, where $t=\max_i{ r_i}$\\
($r_i$ are the ranks of the corresponding subspaces).
\end{itemize}
\end{frame}
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