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Notations

Definition

Graph: Γ = (V ,E) with vertex set V and edge set E ⊆
(V

2

)
.

All graphs in the talk are undirected and simple (no loops or
multiple edges).

The adjacency matrix A of Γ is the matrix whose rows and
columns are indexed by its vertices, such that Axy = 1 if xy
is an edge and 0 otherwise.
The eigenvalues of Γ are the eigenvalues of its adjacency
matrix.
d(x , y):the distance between x and y .
D(Γ): diameter of Γ, if Γ is connected.
Γi(x)= {y | d(x , y) = i}, Γ(x) = Γ1(x) = {y | x ∼ y}.
The subgraph induced on Γ(x) is the local graph of Γ at x ,
denoted by ∆(x).
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Distance-regular graphs (DRG)

A connected graph Γ is called distance-regular (DRG) if there
are numbers ai ,bi , ci , 0 ≤ i ≤ D(Γ), such that for any two verti-
ces x and y with d(x , y) = i ,

|Γ1(y)∩Γi−1(x)| = ci , |Γ1(y)∩Γi(x)| = ai , |Γ1(y)∩Γi+1(x)| = bi .

ai , bi , ci , 0 ≤ i ≤ D(Γ) are called the intersection numbers of Γ.
Petersen graph

x
...

Γi−1(x)

ci

Γi(x)

y

ai

Γi+1(x)

bi

1



Distance-regular graphs DRG with classical parameters Bounding the parameters α, β 1-Homogeneous graphs Thin DRG

Distance-regular graphs (DRG)

Γ is regular with valency b0 = |Γ1(x)| for any x ∈ V (Γ), and

b0 = ci + ai + bi .

For a DRG Γ with diameter D, its intersection array is

ι(Γ) := {b0,b1, . . . ,bD−1; c1, c2, . . . , cD}.
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Hamming graphs

Definition
q ≥ 2, n ≥ 1 integers.
Q = {1, . . . ,q}
The Hamming graph H(n,q) has vertex set Qn

x ∼ y if they differ in exactly one position.
Diameter equals n.

H(n,2) = n-cube.
DRG with ci = i .
Gives an algebraic frame work to study codes, especially
bounds on codes.
For example: the Delsarte linear programming bound and
the Schrijver bound.
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Johnson graphs

Definition
1 ≤ t ≤ n integers.
N = {1, . . . ,n}
The Johnson graph J(n, t) has vertex set

(N
t

)
A ∼ B if #A ∩ B = t − 1.

J(n, t) ∼= J(n,n − t), diameter min{t ,n − t}.
DRG with ci = i2.
Gives an algebraic frame work to study designs.
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More examples

Many known infinite families (with unbounded diameter) of
distance-regular graphs come from classical objects, for ex-
ample:

Hamming graphs,
Johnson graphs,
Grassmann graphs,
bilinear forms graphs,
sesquilinear forms graphs,
dual polar graphs (The vertices are the maximal totally iso-
tropic subspaces on a vector space over a finite field with a
fixed (non-degenerate) bilinear form).

Distance-regular graphs give a way to study these classical
objects from a unified combinatorial view point.
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Some more examples

There are four known infinite families (with unbounded diameter)
of vertex-transitive but not distance-transitive DRGs, namely

the Ustimenko graphs;
the Hemmeter graphs;
the Doob graphs;
the quadratic forms graphs.

There is only one infinite family known (with unbounded diame-
ter) which is not vertex-transitive, namely the twisted Grassmann
graphs (discovered in 2005 by Van Dam and K.). They have two
orbits under their full automorphism group.
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We say that a distance-regular graph Γ of diameter D has classi-
cal parameters (D,b, α, β) if the intersection numbers of Γ satisfy

ci =
[

i

1

]
b

(
1 + α

[
i−1

1

]
b

)
, (1)

bi =
([

D

1

]
b
−
[

i

1

]
b

)(
β − α

[
i

1

]
b

)
, (2)

where
[

j

1

]
b

= 1 + b + b2 + · · · bj−1 for j ≥ 1 and
[

0

1

]
b

= 0.

We note that b 6= 0,−1 by the following result.

Lemma
Let Γ be a distance-regular graph with classical parameters
(D,b, α, β) and the diameter D ≥ 3. Then, b is an integer such
that b 6= 0,−1.
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There are many examples of DRG with classical parameters na-
mely:

Hamming graphs and Doob graphs,
Johnson graphs,
Grassmann graphs and twisted Grassmann graphs,
bilinear forms graphs,
sesquilinear forms graphs,
quadratic forms graphs,
dual polar graphs,
the Ustimenko graphs,
the Hemmeter graphs.
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Bannai’s problem is to classify Q-polynomial distance-regular
graph with large diameter.

For diameter 3 there are too many examples.
An important subproblem of Bannai’s problem is to classify
the DRG with classical parameters, as they are Q-polynomial.
This is a very hard problem as the twisted Grassmann gra-
phs do exist.
All the known infinite families of DRG with valency at least
three and with unbounded diameter have classical parame-
ters or are very closely related to an infinite family of DRG
with classical parameters, like the folded hypercubes and
the doubled Grassmann graphs.
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If b is negative then they are essentially classified by C.-W.
Weng. There is still one infinite family of feasible parameter
sets, for which we do not have any idea whether they exist
or not.

Terwilliger in the 1980’s classified the DRG with classical
parameters with b = 1.
He obtained:

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) where b =
1 and D ≥ 4. Then Γ is a Hamming graph, a halved cube, a
Johnson graph or a Doob graph.
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The Grassmann graphs

Theorem (Metsch(1995))

The Grassmann graphs Jq(n,D) (n ≥ 2D) are characterized by
their intersection array if n ≥ max{2D+2,2D+6−q} and D ≥ 3.

What happens for n = 2D,n = 2D + 1?
Van Dam and K. (2005) found the twisted Grassmann gra-
phs. They have the same parameters as Jq(2D + 1,D), so
the Grassmann graph Jq(2D +1,D) is not determined by its
intersection array.
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Gavrilyuk and K. (2024+): The Grassman graphs Jq(2D,D)
are uniquely determined if D > 12 or if q ≥ 9 and D > 7.

K., Lv and Gavrilyuk (in progress): The Grassmann graphs
J2(2D + 3,D) are uniquely determined if D ≥ 3.
Mr. Lv talked about it last week.
The method is a slight improvement of the method Metsch
used.
Gavrilyuk (in progress): The Grassmann graphs J2(2D +
2,D) are uniquely determined if D ≥ 3 and D odd.
He uses the vanishing Krein parameters to obtain some ex-
tra conditions on the c2-graph.
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Bilinear forms graphs

Metsch, building on earlier work of Sprague, Ray-Chaudhuri,
Huang and Cuypers, showed:

Theorem (Metsch (1999))

The bilinear forms graph Bil(D × e,q) is characterized by its in-
tersection array if q = 2 and e ≥ D + 4 or q ≥ 3 and e ≥ D + 3.

Gavrilyuk and K. (2018): The bilinear forms graph Bil(D × e,q)
is characterized by its intersection array if q = 2 and e = D.
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The following is a simplification of a result of Metsch.

K. Metsch, 1999
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 3, b ≥ 2 and it is not a Grassmann graph, or a bilinear
forms graph. Then β is bounded by b2D+4(α + 1)2.
Moreover, we have the following:
If α ∈ {b − 1,b}, then β ≤ bD+3.

Remark
Can we improve the bound for β?
We think the upper bound for β should be something like CbD

where C is a constant only depending on α and b and not on D.
Can we obtain a bound of α in terms of b?
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D ≥ 3, b ≥ 2 and it is not a Grassmann graph, or a bilinear
forms graph. Then β is bounded by b2D+4(α + 1)2.
Moreover, we have the following:
If α ∈ {b − 1,b}, then β ≤ bD+3.
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Let Γ be a DRG with classical parameters (D,b, α, β) such
that D ≥ 3, b ≥ 1.
Then c2 = (1 + α)(1 + b) and hence α(b + 1) is an integer.

By looking at the integrability of c3 and c2 we easily obtain
α ≥ 0.
By looking at the integrability of p4

22 we obtain α ≤ 5b8, if
D ≥ 4.
All the known infinte unbounded diameter families of DRG
with classical parameters have α ≤ b +

√
b.

If α = 0, β 6= 0, b ≥ 2, D ≥ 4 and locally the disjoint union
of cliques, the graph must be a dual polar graph.
This result is based on work by Brouwer and Wilbrink, De
Bruyn, Cameron, Cohen and others.
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Our result on bounding the parameter α.

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 9, and b ≥ 2. Then α ≤ b2(b + 1).

Moreover, if b = 2 and D ≥ 12, then α ≤ 2.

For b = 2, this shows that we have only 7 choices for α. Several
of them can be removed by looking at the integrability of p2i

ii . This
is still work in progress with H. Ge, C. Lv, and Q. Yang. Mr. Ge
talked about this earlier in this workshop.
As I already said, all the known DRG with classical parameters
and positive b have α ≤ b +

√
b, if D is at least 8. We wonder

whether this is the right bound.
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Partial linear spaces

With C. Lv, we are working on bounding the parameter β in terms
of D,b and α.

Some definitions.
An incidence structure is a tuple (P,L, I) where P and L
are non-empty disjoint sets and I ⊆ P × L. The elements
of P and L are called points and lines, respectively.
If (p, `) ∈ I we say that p is incident with `, or that p is on
the line `. The order of a point is the number of lines it is
incident with and similarly for lines.
The point-line incidence matrix of (P,L, I) is the |P| × |L|-
matrix such that the (p, `) is 1 if p is incident with ` and 0
otherwise.
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A partial linear space is an incidence structure such that
each pair of distinct points are both incident with at most
one line.

The point graph Γ of an incidence structure (P,L, I) is the
graph with vertex set P and two distinct points are adjacent
if they are on a common line. Note that lines are cliques in
Γ.
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A result of Metsch

Metsch gave a sufficient condition for a DRG to be the point
graph of a partial linear space.

Theorem

Let Γ be a DRG. Assume that there exists a positive integer s
such that the following two conditions are satisfied:

(s + 1)(a1 + 1)− k > (c2 − 1)
(s+1

2

)
;

a1 + 1 > (c2 − 1)(2s − 1).
Define a line as a maximal clique with at least a1 + 2 − (c2 −
1)(s−1) vertices. Then X = (V (Γ),L,∈) is a partial linear space,
where L is the set of all lines, and Γ is the point graph of X .
Moreover, every vertex is in at most s lines.
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For a DRG with classical parameters (D,b, α, β) with b ≥ 2
and D ≥ 3, the result of Metsch means that if β > bD+5,
then the graph is the point graph of partial linear space with
large lines with s ≤ 3

2bD.

Although a twisted Grassmann graph is the point graph of a
partial linear space, its lines are not the maximum cliques.
The twisted Grassmann graphs have β > bD.
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Geometric DRG

We first need the Delsarte bound for cliques for a DRG with
classical parameters.

Lemma
Let Γ be a distance-regular graph with classical parameters
(D,b, α, β) with D ≥ 3 and b ≥ 2. Then the order c of a clique
C in Γ is bounded by c ≤ β + 1. If equality holds, the number of
neighbours in C of a vertex not in C is 1 + α or 0.

A clique with equality in the lemma is called a Delsarte cli-
que.
A DRG Γ is called geometric if it is the point graph of a
partial linear space with Delsarte cliques as its lines. This is
equivalent with the condition that we can partition the edge
set of Γ into Delsarte cliques.
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Using the method of Metsch, he used in his bilinear forms graph
paper in 1999, with some modifications and simplifications, we
were able to show:

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 9, and b ≥ 2.

Then there exists a constant C1 = C1(α,b)
such that if β ≥ C1bD, then Γ is geometric. In particular 0 ≤ α ≤
b is an integer.

The C1 is something like b6 and the twisted Grassmann graphs
are not geometric.
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With some extra work we were able to show that the local
graphs are the α-clique-extension of a β

α ×
bD−1
b−1 -grid when

α 6= 0.
The s-clique-extension of a graph G is replacing each ver-
tex x by a clique Cx of order s and if x ∼ y in G then all the
vertices of Cx are adjacent to all vertices of Cy .

For α = 0 we were able to show that the local graphs are
disjoint union of cliques of order β.
This leads to the question whether it is possible to classify
the geometric DRG which are locally the clique extension of
a grid.
This seems to be a difficult problem.
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Let Γ = (V ,E) be a graph.
A set π of subsets of V , π = {C1, . . . ,Ct} is called a partition
of V if
∀i Ci 6= ∅,
∪t

1Ci = V
Ci ∩ Cj 6= ∅ if and only if i = j .

A partition π of V is called equitable if there exist numbers
βij (1 ≤ i , j ≤ t) such that any x ∈ Ci has exactly βij neigh-
bours in Cj .
We denote by B = (βij) the quotient matrix of π.



Distance-regular graphs DRG with classical parameters Bounding the parameters α, β 1-Homogeneous graphs Thin DRG

Let Γ = (V ,E) be a graph.
A set π of subsets of V , π = {C1, . . . ,Ct} is called a partition
of V if
∀i Ci 6= ∅,
∪t

1Ci = V
Ci ∩ Cj 6= ∅ if and only if i = j .

A partition π of V is called equitable if there exist numbers
βij (1 ≤ i , j ≤ t) such that any x ∈ Ci has exactly βij neigh-
bours in Cj .
We denote by B = (βij) the quotient matrix of π.



Distance-regular graphs DRG with classical parameters Bounding the parameters α, β 1-Homogeneous graphs Thin DRG

We say a connected graph Γ has the 1-homogeneous pro-
perty if, for every pair of vertices x and y at distance 1, the
partition of the vertex set of Γ according to the path-length
distance to both x and y is equitable, and the parameters
corresponding to equitable partitions are independent of the
choice of x and y .

Graphs with the 1-homogeneous property are simply said
to be 1-homogeneous.
Note that a 1-homogeneous graph is always DRG.
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Let Γ be a distance-regular graph with diameter D.
For integers s and t , we say that Γ is of order (s, t) if it is
locally the disjoint union of t + 1 cliques of size s.

A distance-regular graph Γ of order (s, t) is called a regular
near polygon if ai = cia1 for all 1 ≤ i ≤ D − 1.
If aD = cDa1, we call Γ a regular near 2D-gon; otherwise it
is called a regular near (2D + 1)-gon.

Nomura 1990’s showed the following result:

Lemma
Let Γ be a 1-homogeneous distance-regular graph with diameter
D > 2 and a1 > 1. Then Γ is locally disconnected if and only if Γ
is a regular near 2D-gon.
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The following result gives a classification of the regular near 2D-
gons if D ≥ 4. It is based on the work of many people including
Brouwer, Wilbrink, Cohen, Cameron, De Bruyn, and so on. I al-
ready mentioned it before.

Theorem
Let G be a regular near 2D-gon with D > 4 and a1 ≥ 1. If c2 > 3
or ci = i (i = 2,3), then G is either a dual polar graph or a
Hamming graph.
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K., B. Gebremichel, M. Abdullah, J.H. Lee (2024+) showed.

Theorem
Let Γ be a 1-homogeneous distance-regular graph with diameter
D > 5 and a1 > 1. Define b = b1/(θ1 + 1). Then, either c2 = 1,
or b > 1 and one of the following holds:

Γ is a regular near 2D-gon;

Γ is a Johnson graph J(2D,D);
Γ is a halved `-cube where ` ∈ {2D,2D + 1};
Γ is a folded Johnson graph J̄(4D,2D);
Γ is a folded halved (4D)-cube.
The valency k of Γ is bounded by a function F (b) of b, i.e.,
k 6 F (b), where
F (b) = 16(b + 1)10 + O((b + 1)9), and b ≥ 2.
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The proof consists of three parts:
Let b ≥ 1 be fixed.
First by using a result of Neumaier we may assume that the
local graph is a Latin square graph or a Steiner graph, if the
valency is large enough.

Next: If c2 ∈ {(b + 1)2,b(b + 1)} then it is impossible.
Last step. Show that if the valency is large enough, then
c2 ∈ {(b + 1)2,b(b + 1)}. In the talk by Dr. Gebremichel, he
will discuss this part.
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In this section we will study thin DRG with classical para-
meters (D,b, α, β), with b ≥ 2.

First we need some definitions.
A regular graph is called co-edge-regular (with parameter
c) if any two distinct non-adjacent vertices have exactly c
common neighbours.
We call a DRG Γ µ-graph-regular if there exists a t such
that the subgraph induced on the common neighbours of
two vertices x and y at distance 2 is t-regular, not depen-
ding on the pair x , y .
If the DRG is µ-graph-regular, then each local graph is a
co-edge-regular graph with parameter t .
Terwilliger (1990’s) showed that a thin DRG with classical
parameters is µ-graph-regular, if the diameter is at least 5.
The bilinear forms graphs are non-thin DRG with classical
parameters, but they are still µ-graph-regular.
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Let Γ be a DRG with classical parameters (D,b, α, β) such
that D ≥ 3, b ≥ 1.

Let ∆(x) be the local graph at vertex x .
Assume that Γ is thin.
Then Terwilliger (1990’s) showed that the nontrivial eigen-
values of ∆(x) are in {β−α−1, αb bD−1−1

b−1 −1,−1,−b−1}.
Let us assume that a1 > 0, otherwise Γ is bipartite.
It follows by results of Curtin and Nomura (2000’s) that if
∆(x) has only two distinct non-trivial eigenvalues, then Γ is
1-homogeneous.
In this case, we obtain that Γ is a Hamming graph, a Jonson
graph, a halved cube, a dual polar graph, or D ≤ 9, by the
results on 1-homogeneous DRG.
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With H. Ge (ongoing work) we obtained the following two results:

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 5, b ≥ 1. If α = 0 and Γ is thin, then Γ is a dual polar graph
or Hamming graph.

Theorem
Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 9, and b = 2. Assume that Γ is thin and that ∆(x) has
exactly 4 distinct eigenvalues. Then Γ is the Grassmann graph
J2(2D,D).

Conjecture

Let Γ be a DRG with classical parameters (D,b, α, β) such that
D ≥ 9, and b = 2. Assume that Γ is thin. Then Γ is a Grassmann
graph J2(n,D) with n ≥ 2D, or a dual polar graph.

Thank you for your attention.
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D ≥ 9, and b = 2. Assume that Γ is thin. Then Γ is a Grassmann
graph J2(n,D) with n ≥ 2D, or a dual polar graph.

Thank you for your attention.
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