Minimum number of disjoint pairs in a uniform family of subsets

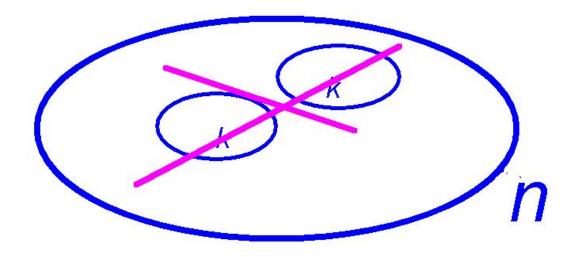
Gyula O.H. Katona Rényi Institute, Budapest

G2C2 Hebei Normal Universíty

August 16, 2024

Let $[n] = \{1, 2, ..., n\}$ be our underlying set. $\binom{[n]}{k}$ will denote the family of all k-element subsets of [n]. A family $\mathcal{F} \subset \binom{[n]}{k}$ is called intersecting if any pair of its members has a non-empty intersection.

Let $[n] = \{1, 2, ..., n\}$ be our underlying set. $\binom{[n]}{k}$ will denote the family of all k-element subsets of [n]. A family $\mathcal{F} \subset \binom{[n]}{k}$ is called intersecting if any pair of its members has a non-empty intersection.



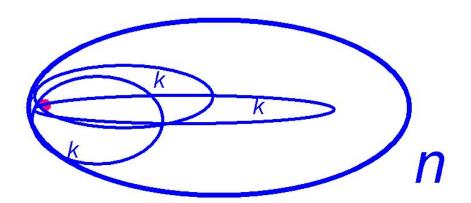
Theorem (Erdős-Ko-Rado, 1961) If $2k \le n, \mathcal{F} \subset {[n] \choose k}$ is intersecting then

$$|\mathcal{F}| \le \binom{n-1}{k-1}.$$

Theorem (Erdős-Ko-Rado, 1961) If $2k \le n, \mathcal{F} \subset {[n] \choose k}$ is intersecting then

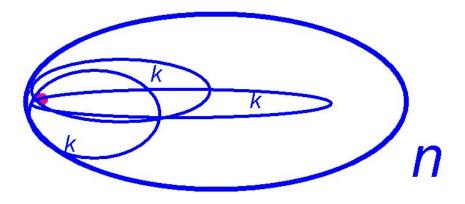
$$|\mathcal{F}| \le \binom{n-1}{k-1}$$

Sharp!

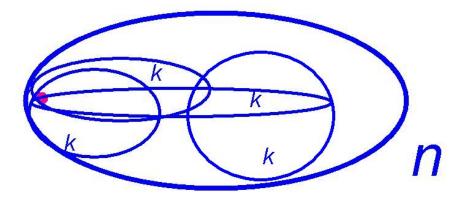


What happens if we have one more set: $|\mathcal{F}| = \binom{n-1}{k-1} + 1$?

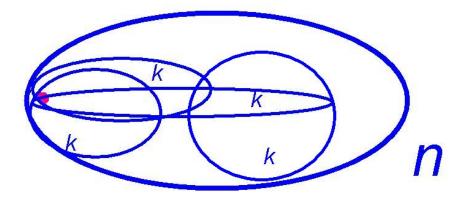
What happens if we have one more set: $|\mathcal{F}| = \binom{n-1}{k-1} + 1$?



What happens if we have one more set: $|\mathcal{F}| = \binom{n-1}{k-1} + 1$?



What happens if we have one more set: $|\mathcal{F}| = \binom{n-1}{k-1} + 1$?



Theorem (Gyula O.H. Katona, Gyula Y. Katona, Zs. Katona, 2012) If $\mathcal{F} \subset {[n] \choose k}, |\mathcal{F}| = {n-1 \choose k-1} + 1$ then there are at least ${n-k-1 \choose k-1}$ disjoint pairs.

k=2

k=2

lexicographic ordering of *k*-element subsets

characteristic vector of the set $A \subset [n]$

the *u*th coordinate is 1 iff $u \in A$

lexicographic ordering of *k*-element subsets

 $n = 5, k = 3, |\mathcal{F}| = {5 \choose 3} = 10$

(0,	0,	1,	1,	1)
(0,	1,	0,	1,	1)
(0,	1,	1,	0,	1)
(0,	1,	1,	1,	0)
(1,	0,	0,	1,	1)
(1,	0,	1,	0,	1)
(1,	0,	1,	1,	0)
(1,	1,	0,	0,	1)
(1,	1,	0,	1,	0)
(1,	1,	1,	0,	0)

$$k=2$$
, EKR

n = 5, k = 2

$$k=2$$
, EKR

n = 5, k = 2

last n-1 sets in lexicographic order

$$k=2$$
, n sets

n = 5, k = 2, smallest number of disjoint pairs

$$k = 2, n + 1$$
 sets

n = 5, k = 2, smallest number of disjoint pairs

(1,	1,	0,	0,	0)
(1,	0,	1,	0,	0)
(1,	0,	0,	1,	0)
(1,	0,	0,	0,	1)
(0,	1,	1,	0,	0)
(0,	1,	0,	1,	0)

last n + 1 sets in lexicographic order

$$k=2$$
, 6 sets

n = 5, k = 2, smallest number of disjoint pairs=4?

(1,	1,	0,	0,	0)
(1,	0,	1,	0,	0)
(1,	0,	0,	1,	0)
(1,	0,	0,	0,	1)
(0,	1,	1,	0,	0)
(0,	1,	0,	1,	0)

last 6 sets in lexicographic order

$$k=2$$
, 6 sets

n = 5, k = 2, smallest number of disjoint pairs=4?

(0,	0,	0,	1,	1)	
(0,	0,	1,	0,	1)	
(0,	0,	1,	1,	0)	
(0,	1,	0,	0,	1)	
(0,	1,	0,	1,	0)	
(0,	1,	1,	0,	0)	

first 6 sets in lexicographic order

$$k=2$$
, 6 sets

n = 5, k = 2, smallest number of disjoint pairs=3

(0,	0,	0,	1,	1)	
(0,	0,	1,	0,	1)	
(0,	0,	1,	1,	0)	
(0,	1,	0,	0,	1)	
(0,	1,	0,	1,	0)	
(0,	1,	1,	0,	0)	

first 6 sets in lexicographic order

 $dp(\mathcal{F})$ denotes the number of disjoint pairs in \mathcal{F}

 $dp(\mathcal{F})$ denotes the number of disjoint pairs in \mathcal{F}

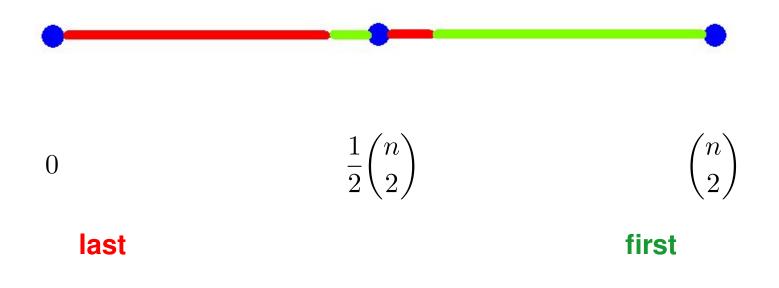
Theorem (Ahlswede-Katona, 1977) If $\mathcal{F} \subset {\binom{[n]}{2}}$ and $|\mathcal{F}|$ is fixed then dp (\mathcal{F}) is minimized either for the lexicographically last or for the lexicographically first $|\mathcal{F}|$ sets.

 $dp(\mathcal{F})$ denotes the number of disjoint pairs in \mathcal{F}

Theorem (Ahlswede-Katona, 1977) If $\mathcal{F} \subset {\binom{[n]}{2}}$ and $|\mathcal{F}|$ is fixed then dp(\mathcal{F}) is minimized either for the lexicographically last or for the lexicographically first $|\mathcal{F}|$ sets.

 $dp(\mathcal{F})$ denotes the number of disjoint pairs in \mathcal{F}

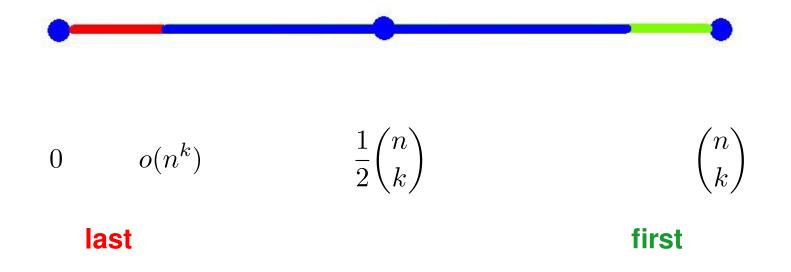
Theorem (Ahlswede-Katona, 1977) If $\mathcal{F} \subset {\binom{[n]}{2}}$ and $|\mathcal{F}|$ is fixed then dp (\mathcal{F}) is minimized either for the lexicographically last or for the lexicographically first $|\mathcal{F}|$ sets.

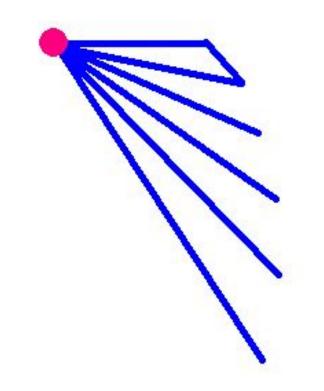


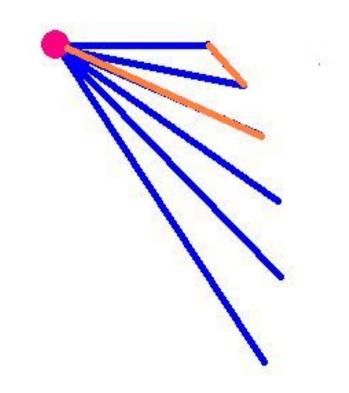
Theorem (Das, Gan, Sudakov, 2016) If $\mathcal{F} \subset {\binom{[n]}{k}}$ and $|\mathcal{F}| = o(n^k)$ is fixed then dp(\mathcal{F}) is minimized for the lexicographically last $|\mathcal{F}|$ sets.

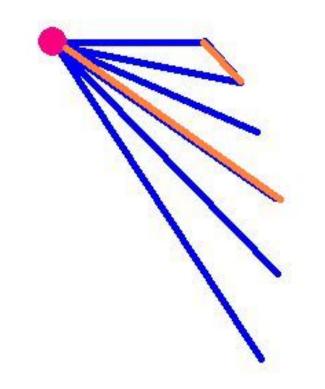
Theorem (Das, Gan, Sudakov, 2016) If $\mathcal{F} \subset {\binom{[n]}{k}}$ and $|\mathcal{F}| = o(n^k)$ is fixed then dp(\mathcal{F}) is minimized for the lexicographically last $|\mathcal{F}|$ sets.

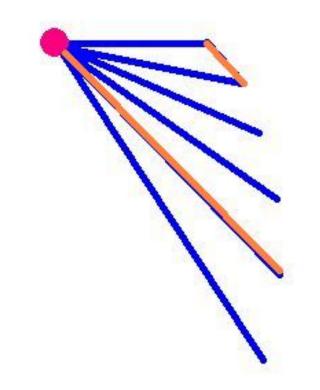
Theorem (Das, Gan, Sudakov, 2016) If $\mathcal{F} \subset {\binom{[n]}{k}}$ and $|\mathcal{F}| = o(n^k)$ is fixed then dp(\mathcal{F}) is minimized for the lexicographically last $|\mathcal{F}|$ sets.

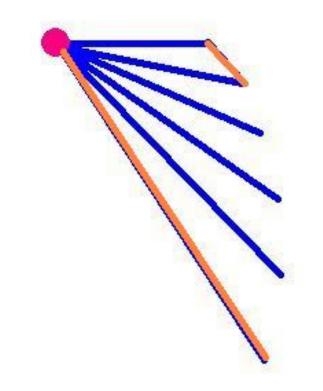


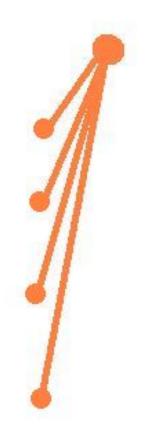












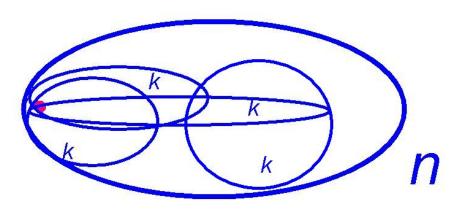
If $\mathcal{F} \subset {[n] \choose k}$, let $\mathsf{DP}(\mathcal{F})$ be a graph with vertex set \mathcal{F} and two vertices are adjacent if the corresponding sets are disjoint.

If $\mathcal{F} \subset {[n] \choose k}$, let $\mathsf{DP}(\mathcal{F})$ be a graph with vertex set \mathcal{F} and two vertices are adjacent if the corresponding sets are disjoint.

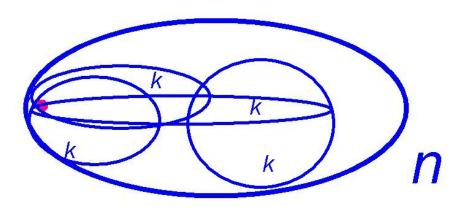
 $dp(\mathcal{F}) = |\mathrm{DP}(\mathcal{F})|.$

general k

$$|\mathcal{F}| = \binom{n-1}{k-1} + 1$$
?

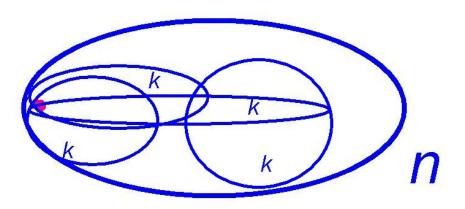


$$|\mathcal{F}| = \binom{n-1}{k-1} + 1$$
?



Theorem (Gyula O.H. Katona, Gyula Y. Katona, Zs. Katona, 2012) If $\mathcal{F} \subset {[n] \choose k}, |\mathcal{F}| = {n-1 \choose k-1} + 1$ then there are at least ${n-k-1 \choose k-1}$ disjoint pairs.

$$|\mathcal{F}| = \binom{n-1}{k-1} + 1$$
?



Theorem (Gyula O.H. Katona, Gyula Y. Katona, Zs. Katona, 2012) If $\mathcal{F} \subset {\binom{[n]}{k}}, |\mathcal{F}| = {\binom{n-1}{k-1}} + 1$ then $dp(\mathcal{F}) \ge {\binom{n-k-1}{k-1}}$.

Zsolt Katona

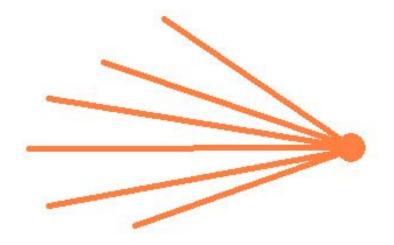
Haas School of Business University of California, Berkeley

Professor

Marketing

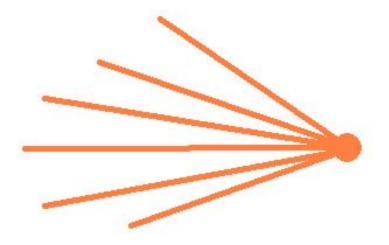
$$|\mathcal{F}| = \binom{n-1}{k-1} + 1$$
?.

The construction above gives this $\mathsf{DP}(\mathcal{F})$:



$$|\mathcal{F}| = \binom{n-1}{k-1} + 1$$
?.

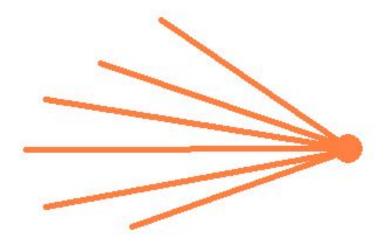
The construction above gives this $\mathsf{DP}(\mathcal{F})$:



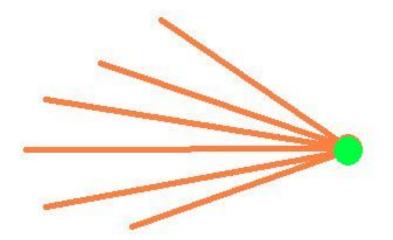
Star!

 $\tau(G)$ is the minimum number of vertices covering at least one vertex of every edge of the graph G.

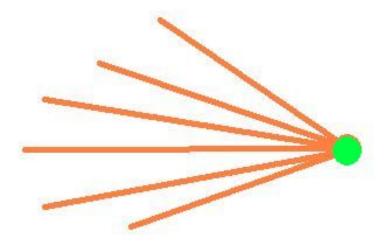
 $\tau(G)$ is the minimum number of vertices covering at least one vertex of every edge of the graph G.



 $\tau(G)$ is the minimum number of vertices covering at least one vertex of every edge of the graph G.



 $\tau(G)$ is the minimum number of vertices covering at least one vertex of every edge of the graph G.



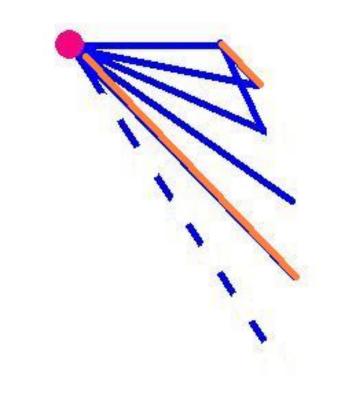
 $\tau(G) = 1$ iff G is a star.

$$k = 2, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + 1 = n, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$$

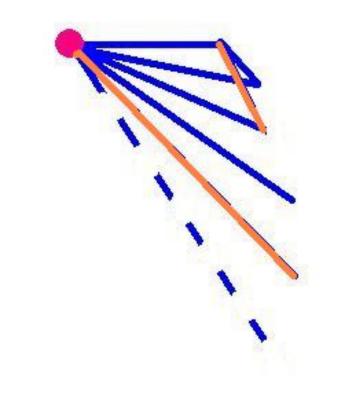
$k = 2, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + 1 = n, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$

$k = 2, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + 1 = n, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$

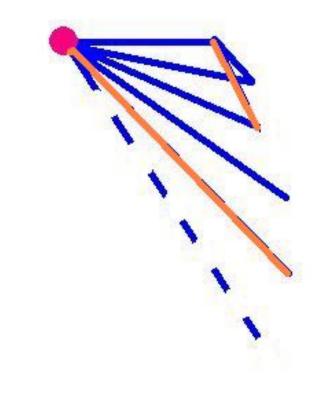
$k = 2, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + 1 = n, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$



$k = 2, \quad |\mathcal{F}| = \binom{n-1}{k-1} + 1 = n, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$

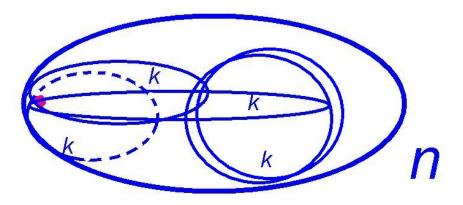


$$k = 2, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + 1 = n, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$$

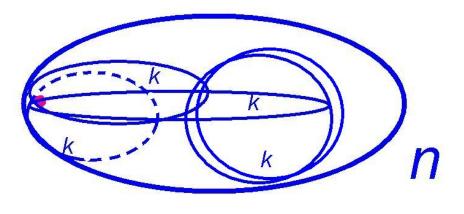


$$\mathsf{dp}(\mathcal{F}) = 2(n-2)$$

$|\mathcal{F}| = {\binom{n-1}{k-1}} + 1, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$

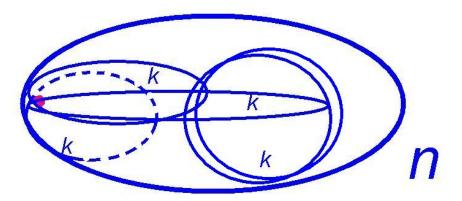


 $|\mathcal{F}| = \binom{n-1}{k-1} + 1, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$



 $\binom{n-k-1}{k-1} - 1$

$|\mathcal{F}| = \binom{n-1}{k-1} + 1, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$



$$\binom{n-k-1}{k-1} - 1$$

 $\mathsf{dp}(\mathcal{F}) = 2\left(\binom{n-k-1}{k-1} - 1\right)$

Theorem (Jasińska-Katona, 2024+) Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}, |\mathcal{F}| = {\binom{n-1}{k-1}} + 1$. Then either \mathcal{F} is a trivially intersecting family plus one more *k*-element set, or

$$dp(\mathcal{F}) \ge 2\binom{n-k-1}{k-1} - 2$$

Theorem (Jasińska-Katona, 2024+) Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}, |\mathcal{F}| = {\binom{n-1}{k-1}} + 1$. Then either \mathcal{F} is a trivially intersecting family plus one more *k*-element set, or

$$dp(\mathcal{F}) \ge 2\binom{n-k-1}{k-1} - 2$$

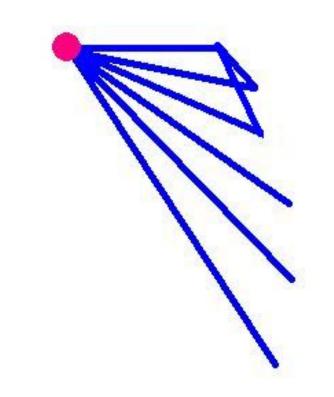
Theorem (Jasińska-Katona, 2024+) Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}, |\mathcal{F}| = {\binom{n-1}{k-1}} + 1$. Then either \mathcal{F} is a trivially intersecting family plus one more *k*-element set, or

$$dp(\mathcal{F}) \ge 2\binom{n-k-1}{k-1} - 2$$

if n is large enough. \leftarrow this should be removed

$$k = 2, \quad |\mathcal{F}| = {n-1 \choose k-1} + 2 = n+1, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$$

$k = 2, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + 2 = n+1, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$



$k = 2, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + 2 = n+1, \quad \tau(\mathrm{DP}(\mathcal{F})) > 1$

$$dp(\mathcal{F}) = 2(n-3)$$

 $2k \le n, \quad \mathcal{F} \subset {\binom{[n]}{k}}, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$

$$2k \le n, \quad \mathcal{F} \subset {[n] \choose k}, \quad |\mathcal{F}| = {n-1 \choose k-1} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$

An observation:

$$2k \le n, \quad \mathcal{F} \subset {[n] \choose k}, \quad |\mathcal{F}| = {n-1 \choose k-1} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$

An observation:

Let $\mathcal{R} \subset \mathcal{F}$ be a minimum vertex cover of $\mathsf{DP}(\mathcal{F})$

$$2k \le n, \quad \mathcal{F} \subset {[n] \choose k}, \quad |\mathcal{F}| = {n-1 \choose k-1} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$

An observation:

Let $\mathcal{R} \subset \mathcal{F}$ be a minimum vertex cover of $\mathsf{DP}(\mathcal{F})$ that is $|\mathcal{R}| = \tau(\mathsf{DP}(\mathcal{F}))$.

$$2k \le n, \quad \mathcal{F} \subset {[n] \choose k}, \quad |\mathcal{F}| = {n-1 \choose k-1} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$

An observation:

Let $\mathcal{R} \subset \mathcal{F}$ be a minimum vertex cover of $\mathsf{DP}(\mathcal{F})$ that is $|\mathcal{R}| = \tau(\mathsf{DP}(\mathcal{F}))$.

 $\mathcal{F} - \mathcal{R}$ is an intersecting family.

$$2k \le n$$
, $\mathcal{F} \subset {\binom{[n]}{k}}$, $|\mathcal{F}| = {\binom{n-1}{k-1}} + r$, $\tau(\mathrm{DP}(\mathcal{F})) \ge s$

An observation:

Let $\mathcal{R} \subset \mathcal{F}$ be a minimum vertex cover of $\mathsf{DP}(\mathcal{F})$ that is $|\mathcal{R}| = \tau(\mathsf{DP}(\mathcal{F}))$.

 $\mathcal{F} - \mathcal{R}$ is an intersecting family. By **EKR**:

$$|\mathcal{F} - \mathcal{R}| \le \binom{n-1}{k-1}$$

$$2k \le n, \quad \mathcal{F} \subset {[n] \choose k}, \quad |\mathcal{F}| = {n-1 \choose k-1} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$

An observation:

Let $\mathcal{R} \subset \mathcal{F}$ be a minimum vertex cover of $DP(\mathcal{F})$ that is $|\mathcal{R}| = \tau(DP(\mathcal{F}))$. $\mathcal{F} - \mathcal{R}$ is an intersecting family. By **EKR**:

$$|\mathcal{F} - \mathcal{R}| \le \binom{n-1}{k-1}$$
$$\binom{n-1}{k-1} + r = |\mathcal{F}| \le \binom{n-1}{k-1} + \tau(\mathrm{DP}(\mathcal{F}))$$

/ 1)

$$2k \le n, \quad \mathcal{F} \subset {[n] \choose k}, \quad |\mathcal{F}| = {n-1 \choose k-1} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$

An observation:

Let $\mathcal{R} \subset \mathcal{F}$ be a minimum vertex cover of $\mathsf{DP}(\mathcal{F})$ that is $|\mathcal{R}| = \tau(\mathsf{DP}(\mathcal{F}))$. $\mathcal{F} - \mathcal{R}$ is an intersecting family. By **EKR**:

$$\begin{aligned} |\mathcal{F} - \mathcal{R}| &\leq \binom{n-1}{k-1} \\ \binom{n-1}{k-1} + r &= |\mathcal{F}| \leq \binom{n-1}{k-1} + \tau(\mathrm{DP}(\mathcal{F})) \\ r &\leq \tau(\mathrm{DP}(\mathcal{F})) \end{aligned}$$

Finally:

$$2k \le n, \quad \mathcal{F} \subset {\binom{[n]}{k}}, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$
$$r \le \tau(\mathrm{DP}(\mathcal{F}))$$

$$2k \le n, \quad \mathcal{F} \subset {\binom{[n]}{k}}, \quad |\mathcal{F}| = {\binom{n-1}{k-1}} + r, \quad \tau(\mathrm{DP}(\mathcal{F})) \ge s$$
$$r \le \tau(\mathrm{DP}(\mathcal{F}))$$

Theorem (Jasińska-Katona, 2024+) Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}, |\mathcal{F}| = {\binom{n-1}{k-1}} + r$ and $\tau(\mathrm{DP}(\mathcal{F})) \geq s$ where $r \leq s$. Then

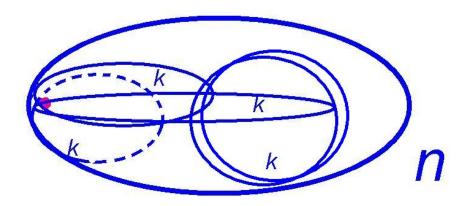
$$dp(\mathcal{F}) \ge s\left(\binom{n-k-1}{k-1} + r - s\right)$$

Theorem (Jasińska-Katona, 2024+) Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}, |\mathcal{F}| = {\binom{n-1}{k-1}} + r$ and $\tau(\mathrm{DP}(\mathcal{F})) \geq s$ where $r \leq s$. Then

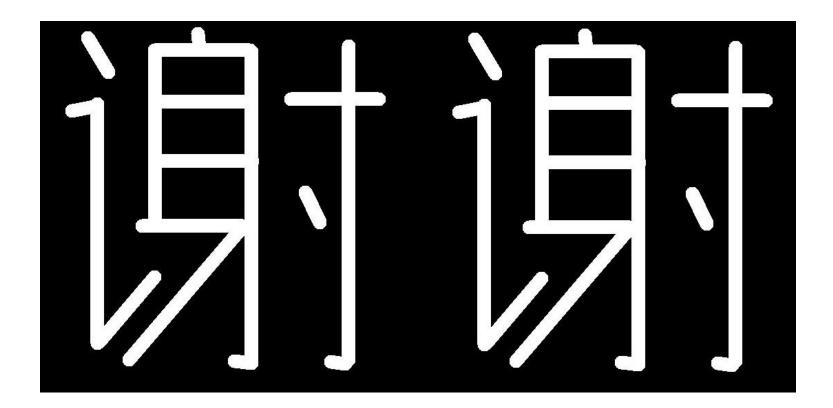
$$dp(\mathcal{F}) \ge s\left(\binom{n-k-1}{k-1}+r-s\right)$$

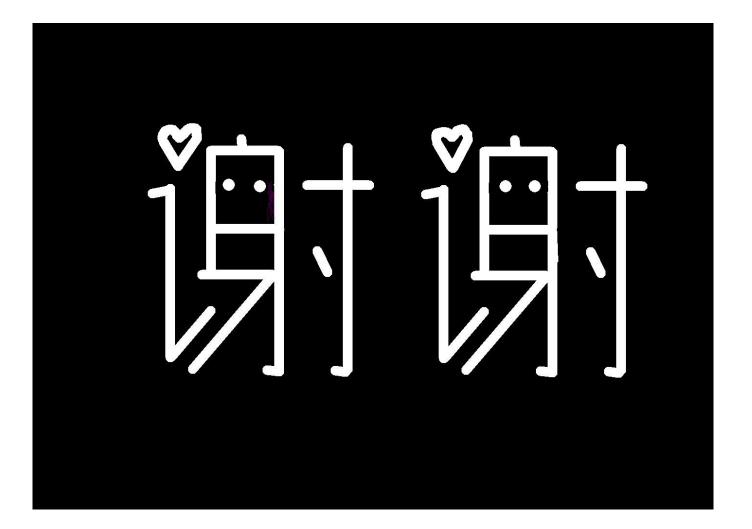
Theorem (Jasińska-Katona, 2024+) Suppose that $\mathcal{F} \subset {\binom{[n]}{k}}, |\mathcal{F}| = {\binom{n-1}{k-1}} + r$ and $\tau(\mathrm{DP}(\mathcal{F})) \geq s$ where $r \leq s$. Then

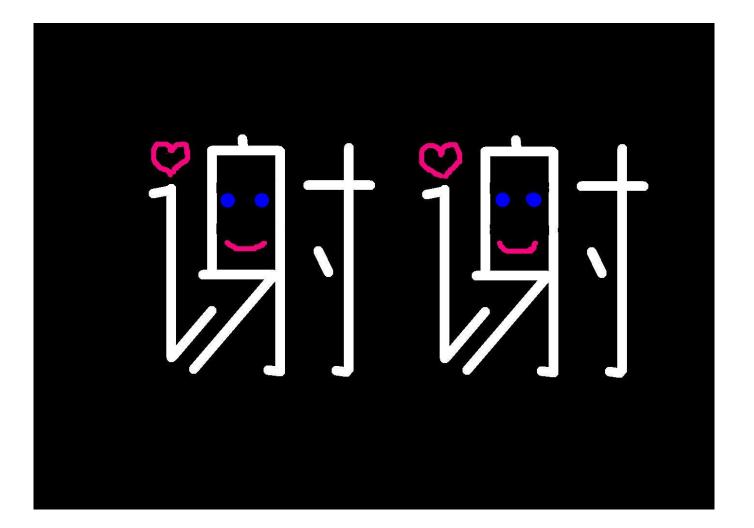
$$dp(\mathcal{F}) \ge s\left(\binom{n-k-1}{k-1} + r - s\right)$$

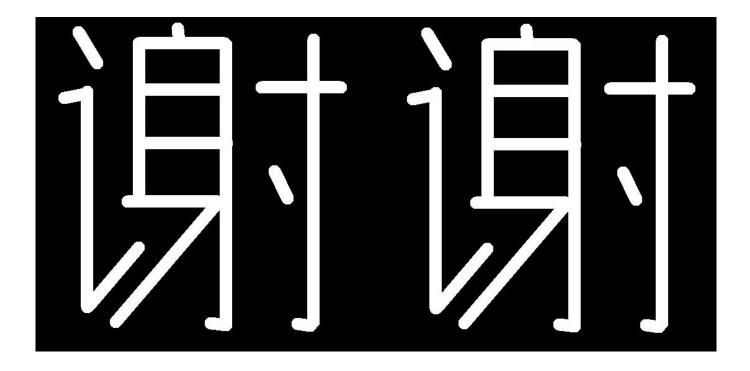


delete s - r sets add s sets









Thank you for your attention!