Minimum number of disjoint pairs in a uniform family of subsets

Gyula O.H. Katona *Rényi Institute, Budapest* ohkatona@renyi.hu

Let $[n] = \{1, 2, ..., n\}$ be our underlying set. $\binom{[n]}{k}$ will denote the family of all k-element subsets of [n]. A family $\mathcal{F} \subset \binom{[n]}{k}$ is called intersecting if any pair of its members have a non-empty intersection. The celebrated theorem of Erdős, Ko and Rado [3] states that if $2k \leq n$, $\mathcal{F} \subset \binom{[n]}{k}$ is intersecting then $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

Therefore if \mathcal{F} is larger, then there is a pair of disjoint members. But what is the minimum of the number dp(\mathcal{F}) of the disjoint pairs if $|\mathcal{F}|$ is given? This question was solved for the case k = 2 in [1]. List the characteristic vectors (here two 1's and n-2 0's) of the subsets in a lexicographic order. Then the minimum of dp(\mathcal{F}) is obtained either for the first or for the last $|\mathcal{F}|$ members. For arbitrary k the first result was found in [5] : when $|\mathcal{F}| = \binom{n-1}{k-1} + 1$ then dp(\mathcal{F}) $\geq \binom{n-k-1}{k-1}$ and the corresponding construction consists of the lexicographically first members. A major step in this direction was the result of Das, Gan and Sudakov [2]: when $|\mathcal{F}| = \binom{n-1}{k-1} + r$ and n is large enough with respect to r then dp(\mathcal{F}) is maximized for the lexicographically first members, again.

Let $DP(\mathcal{F})$ denote the graph where the vertices are the members of \mathcal{F} and two such vertices are adjacent if the corresponding sets are disjoint. If $|\mathcal{F}| = \binom{n-1}{k-1} + 1$ then $dp(\mathcal{F}) = \binom{n-k-1}{k-1}$ achieved for a construction in which the edges of $DP(\mathcal{F})$ form a star. In [4] we proved that excluding this possibility, the "second best value" of $dp(\mathcal{F})$ is $2\left(\binom{n-k-1}{k-1} - 1\right)$. The number of disjoint pairs is almost the double. In general we give a good lower bound on the number of disjoint pairs when $\tau(DP(\mathcal{F}))$, the minimum number of vertices covering all edges of $\tau(DP(\mathcal{F}))$ is given.

References

- R. Ahlswede, G.O.H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32(1978) 97-120.
- [2] S. DAS, W. GAN, B. SUDAKOV, The minimum number of disjoint pairs in set systems and related problems, *Combinatorica* 36(6)(2016) 623 – 660.
- [3] P. ERDŐS, CHAO KO AND R. RADO, Intersection theorems for systems of finite sets, Q. J. Math. Oxf. II Ser. 12(1961) 313-318.
- [4] Joanna Jasińska, Gyula O.H. Katona, The number of disjont pairs in families of k-element subsets, submitted.
- [5] G.O.H. KATONA, G.Y. KATONA AND Z. KATONA, Mostprobably intersecting families of subsets, Combinatorics, Probability and Computing 21(1-2)(2012) 219 – 227.