Minimum number of disjoint pairs in a uniform family of subsets

Gyula O.H. Katona
Rényi Institute, Budapest
ohkatona@renyi.hu

Let $[n]=\{1,2, \ldots, n\}$ be our underlying set. $\binom{[n]}{k}$ will denote the family of all k-element subsets of [n]. A family $\mathcal{F} \subset\binom{[n]}{k}$ is called intersecting if any pair of its members have a non-empty intersection. The celebrated theorem of Erdős, Ko and Rado [3] states that if $2 k \leq n, \mathcal{F} \subset\binom{[n]}{k}$ is intersecting then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$.

Therefore if \mathcal{F} is larger, then there is a pair of disjoint members. But what is the minimum of the number $\operatorname{dp}(\mathcal{F})$ of the disjoint pairs if $|\mathcal{F}|$ is given? This question was solved for the case $k=2$ in [1]. List the characteristic vectors (here two 1's and $n-20$'s) of the subsets in a lexicographic order. Then the minimum of $\operatorname{dp}(\mathcal{F})$ is obtained either for the first or for the last $|\mathcal{F}|$ members. For arbitrary k the first result was found in $[5]$: when $|\mathcal{F}|=\binom{n-1}{k-1}+1$ then $\operatorname{dp}(\mathcal{F}) \geq\binom{ n-k-1}{k-1}$ and the corresponding construction consists of the lexicographically first members. A major step in this direction was the result of Das, Gan and Sudakov [2]: when $|\mathcal{F}|=\binom{n-1}{k-1}+r$ and n is large enough with respect to r then $\operatorname{dp}(\mathcal{F})$ is maximized for the lexicographically first members, again.

Let $\operatorname{DP}(\mathcal{F})$ denote the graph where the vertices are the members of \mathcal{F} and two such vertices are adjacent if the corresponding sets are disjoint. If $|\mathcal{F}|=\binom{n-1}{k-1}+1$ then $\operatorname{dp}(\mathcal{F})=\binom{n-k-1}{k-1}$ achieved for a construction in which the edges of $\operatorname{DP}(\mathcal{F})$ form a star. In [4] we proved that excluding this possibility, the "second best value" $\operatorname{of~} \operatorname{dp}(\mathcal{F})$ is $2\left(\binom{n-k-1}{k-1}-1\right)$. The number of disjoint pairs is almost the double. In general we give a good lower bound on the number of disjoint pairs when $\tau(\operatorname{DP}(\mathcal{F}))$, the minimum number of vertices covering all edges of $\tau(\operatorname{DP}(\mathcal{F}))$ is given.

References

[1] R. Ahlswede, G.O.H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32(1978) 97-120.
[2] S. Das, W. Gan, B. Sudakov, The minimum number of disjoint pairs in set systems and related problems, Combinatorica 36(6)(2016) 623-660.
[3] P. Erdôs, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. Oxf. II Ser. 12(1961) 313-318.
[4] Joanna Jasińska, Gyula O.H. Katona, The number of disjont pairs in families of k-element subsets, submitted.
[5] G.O.H. Katona, G.Y. Katona and Z. Katona, Mostprobably intersecting families of subsets, Combinatorics, Probability and Computing 21(1-2)(2012) 219 - 227. .

