On Boolean Degree 1 Functions (Cameron-Liebler Sets) in Finite Vector Spaces

Ferdinand Ihringer

SUSTech, Shenzhen, China

20 August 2024 Graphs and Groups, Complexity and Convexity (G2C2) Hebei Normal University, Shijiazhuang, China

Hypercubes O●OOOOOOOO	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
A Simple G	uestion			

Let $f : \mathbb{R}^n \to \mathbb{R}$ be an affine function, that is

$$f(x) = c + \sum c_i x_i.$$

Definition

We call f **Boolean** over D if $f(x) \in \{0, 1\}$ for all $x \in D$.

Question

What are the Boolean affine functions for the hypercube $D = \{0, 1\}^n$?

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Dictator				

Polynomial f: x_1 .

We only need x_1 to determine f(x).

Hypercubes 000000000	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
The Degree 1	Functions on	the Hypercube		

Example

The constant functions f(x) = 0 and f(x) = 1.

Example

The functions $f(x) = x_i$ and $f(x) = 1 - x_i$.

Proposition

Let f be an affine Boolean function on the hypercube. Then $f(x) = c + \sum c_i x_i$ is one of 0, 1, x_i , or $1 - x_i$.

T I D 4				
Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks

The Degree 1 Functions on the Hypercube

Example

The constant functions f(x) = 0 and f(x) = 1.

Example

The functions $f(x) = x_i$ and $f(x) = 1 - x_i$.

Proposition

Let f be an affine Boolean function on the hypercube. Then $f(x) = c + \sum c_i x_i$ is one of 0, 1, x_i , or $1 - x_i$.

Proof.

WLOG f(00...0) = 0. Hence, c = 0. WLOG f(10...0) = 1. Hence, $c_1 = 1$. Now all the other c_i 's must be 0.

Degree 2, Example 1

Polynomial $f: x_1x_2$.

We only need x_1, x_2 to determine f(x).

Degree 2, Example 2

Polynomial $f: 1 - x_1 + (x_1 + x_2 - 1)x_3 + (x_1 - x_2)x_4.$

We need x_1, x_2, x_3, x_4 to determine f(x)!

Hypercubes 000000●000	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Some Genera	lizations (I)			

What about Boolean degree 2 functions f on the hypercube?

Answer: Then
$$f$$
 or $1 - f$ is one of these:¹
• 0,
• x_i ,
• $x_i + x_j - x_i x_j$,
• $x_i x_j + (1 - x_i) x_k$,
• $x_i x_j + x_i x_k + x_j x_k - x_i - x_j - x_k$,
• $f(x) = 1$ iff $x_i \le x_j \le x_k \le x_\ell$ or $x_i \ge x_j \ge x_k \ge x_\ell$.

Degree 2: Camion, Carlet, Charpin & Sendrier (1991). Degree 3: Kirienko (2004), Zverev (2008).

¹I stole this list from Yuval Filmus.

Hypercubes ○○○○○○●○○	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Some Genera	lizations (II)		

What about Boolean degree d functions f on the hypercube?

Only *m* relevant variables: *m*-junta.

Theorem (Nisan, Szegedy (1991))

A Boolean degree d function on the hypercube is a $d \cdot 2^{d-1}$ -junta.

Chiarelli, Hatami and Saks (2018): Tight bound of $O(2^d)$. Current best by Wellens (2019): $\leq 4.416 \cdot 2^d$.

Carlet and Tarannikov (2002): Lower bound of $3 \cdot 2^{d-1} - 2$.

Two applications: cryptography, complexity theory. One C in G2C2!

Hypercubes ○○○○○○○●○	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Some General	izations (III))		

What about **almost** affine Boolean functions f on the hypercube?

That is, $||f - g||_2 < \varepsilon$ for some affine function g.

Friedgut, Kalai, and Naor (2002): If f is Boolean and almost affine, then f is almost a Boolean affine function.

Kindler, Safra (2002): Similar result for degree d.

Hypercubes 00000000●	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Some Other	Words			

We already know: Boolean degree 1 function.

Other used words which might mean the same (depending on context):

- Equitable bipartition.
- Regular set.
- Perfect 2-coloring.
- Cameron-Liebler set.
- Completely regular code.
- Tight set.
- Anti-1-design.
- Dual degree 1.
- Graphical design.
- Intriguing set.

In the hypercube: Good understanding of low degree functions.

What about other domains?

For instance:

- A slice of the hypercube: all k-sets of $\{1, \ldots, n\}$ (Johnson graphs).
- The q-analog of the slice: all k-spaces of \mathbb{F}_q^n (Grassmann graphs).

We will look at k-sets and k-spaces.²

See Dafni, Filmus, Lifshitz, Lindzey, and Vinyals (2020) for results on Sym(n).

They use a convex polytope!

One C in G2C2!

²Cf. Kiermaier, Mannaert, Wassermann (2024).

³Alternative quotes: "What is to be done?".

Tolstoy, 1866; Lenin, 1902.

Boolean degree 1 functions on k-sets of $\{1, \ldots, n\}$ are trivial . I.e. they are dictators $(0, 1, x_i \text{ or } 1 - x_i)$. (For $n-k, k \ge 2$.)

Various proofs: Meyerowitz (1992, see Martin (2004)), Filmus (2016), Filmus and Ih. (2019). Also De Boeck, Strome, Svob (2016), but only for $k \mid n$.

Hypercubes	Johnson Graphs ○○●	Grassmann Graphs	The Proof	Remarks
Bounded D	egree			

Recall FKN for hypercube:

Boolean almost degree $1 \longrightarrow$ almost dictator. For k-sets of $\{1, \ldots, n\}$:

Theorem (Filmus (2016))

Boolean almost degree $1 \rightarrow$ almost sum of dictators (or complement).

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Bounded D	egree			

Recall FKN for hypercube:

Boolean almost degree $1 \longrightarrow$ almost dictator. For k-sets of $\{1, \ldots, n\}$:

Theorem (Filmus (2016))

Boolean almost degree $1 \rightarrow$ almost sum of dictators (or complement).

Recall for hypercube: Boolean degree $d \longrightarrow \gamma(d)$ -junta.

Theorem (Filmus, Ih. (2019))

If $\min(k, n-k) \ge C^d$: Boolean degree $d \longrightarrow \gamma(d)$ -junta.

Keller, Klein (2019): stability version.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Bounded D	egree			

Recall FKN for hypercube:

Boolean almost degree $1 \longrightarrow$ almost dictator. For k-sets of $\{1, \ldots, n\}$:

Theorem (Filmus (2016))

Boolean almost degree $1 \rightarrow$ almost sum of dictators (or complement).

Recall for hypercube: Boolean degree $d \longrightarrow \gamma(d)$ -junta.

Theorem (Filmus, Ih. (2019))

If $\min(k, n-k) \ge C^d$: Boolean degree $d \longrightarrow \gamma(d)$ -junta.

Keller, Klein (2019): stability version.

Theorem (Filmus (2023))

If $\min(k, n-k) \ge 2d$: Boolean degree $d \longrightarrow \gamma'(d)$ -junta.

Note: We have $\gamma(2) = 4$, but there is an example in J(8,4) with 5 relevant variables, so $\gamma'(2) \neq \gamma(2)$.

The subspace lattice of \mathbb{F}_2^4 .

We consider *k*-spaces of a finite vector space!

Degree 1: $f = \sum_{P} c_{P} x_{P}$, P's are 1-spaces. Here $x_P(S) = 1$ if $P \subseteq S$ and $x_P(S) = 0$ otherwise.

Degree 1, alternative: $f = \sum_{H} c_H x_H$, *H*'s are (n-1)-spaces. Here $x_H(S) = 1$ if $S \subseteq H$ and $x_H(S) = 0$ otherwise.

Example (Trivial Example 1)

Take all k-spaces through a fixed 1-space P: x_P .

Or the complement: $1 - x_P$. (This is always possible.)

Example (Trivial Example 2)

Take all k-spaces in a fixed hyperplane H: x_H .

Degree 1 in x_P 's? Write $H = \alpha \sum_{P \subseteq H} x_P + \beta \sum_{P \notin H} x_P$.

Example (Trivial Example 3)

All through 1-space *P* or in hyperplane *H*: $x_P + x_H$.

Or the complement: $1 - x_P - x_H$.

Hypercubes	Johnson Graphs	Grassmann Graphs ○○○○●○○	The Proof	Remarks
Degree 1	Functions on 2	-spaces in \mathbb{F}_{q}^{n}		

Cameron, Liebler (1982): Investigate action of subgroups of $P\Gamma L(4,q)$ on 1- and 2-spaces of \mathbb{F}_q^4 .

Same number of orbits: Boolean degree 1 function.

Cameron, Liebler (1982): Investigate action of subgroups of $P\Gamma L(4,q)$ on 1- and 2-spaces of \mathbb{F}_q^4 .

Same number of orbits: Boolean degree 1 function.

Conjecture (Cameron, Liebler (1982, very simplified))

If Boolean degree 1 function f on 2-spaces, then f or 1 - f is ...

- 0,
- x_P for a 1-space P,
- x_H for a hyperplane H, or
- $x_P + x_H$ for a 1-space P and a hyperplane H, $P \nsubseteq H$.
- Conjecture very natural: true for subsets.
- True for 2-spaces of \mathbb{F}_2^n by Drudge (1998).
- False for 2-spaces of \mathbb{F}_q^4 : First counterexample for q = 3 by Drudge (1998), later many more for (n, k) = (4, 2).

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
State of the /	Art			

For 2-spaces in \mathbb{F}_q^4 many **counterexamples**, e.g.:

Bruen, Cossidente, De Beule, Demeyer, Drudge, Feng, Gavrilyuk, Matkin, Metsch, Momihara, Pavese, Penttila, Rodgers, Xiang, Zou.

Restrictions on sizes of non-trivial examples for 2-spaces in \mathbb{F}_q^4 , e.g.:

- Metsch (2010),
- Metsch (2014),
- Gavrilyuk, Metsch (2014).

Restrictions in a more general setting:

- Metsch (2017),
- Rodgers, Storme, Vansweevelt (2018),
- Blokhuis, De Boeck, D'haeseleer (2019),
- De Beule, Mannaert, Storme (2022),
- Ihringer (2024?),
- De Beule, Mannaert, Storme (2024?).

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Classification	Results			

Boolean degree 1 functions f on k-spaces for n > 4:

Theorem (Drudge (1998), Gavrilyuk and Mogilnykh (2014), Gavrilyuk and Matkin (2018), Matkin (2018))

All trivial for k = 2 and $q \in \{2, 3, 4, 5\}$.

Proof: Clever computations and induction on n.

Theorem (Filmus, Ih. (2019))

All trivial for $k \ge 2$ and $q \in \{2, 3, 4, 5\}$.

Proof: Induction on *k*.

Hypercubes	Johnson Graphs	Grassmann Graphs ○○○○○●	The Proof	Remarks
Classification	Results			

Boolean degree 1 functions f on k-spaces for n > 4:

Theorem (Drudge (1998), Gavrilyuk and Mogilnykh (2014), Gavrilyuk and Matkin (2018), Matkin (2018))

All trivial for k = 2 and $q \in \{2, 3, 4, 5\}$.

Proof: Clever computations and induction on n.

Theorem (Filmus, Ih. (2019))

All trivial for $k \ge 2$ and $q \in \{2, 3, 4, 5\}$.

Proof: Induction on k.

Theorem (Ih. (2024, AMS Proceedings, accepted))

All trivial for $k \ge 2$ and $\max(n-k,k) \ge c_0(k,q)$.

This insight came a day after much Moutai, Tsingtao beer, and KTV.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof OOOOO	Remarks
T I C.		c		

The Structure of the Proof

The proof relies on ...

Structural Results:

- Drudge (1998): $f(x) = x_P$ locally $\longrightarrow f(x) = x_P$ globally.
- Drudge (1998): $f(x) = x_P + x_H$ locally $\longrightarrow f(x) = x_P + x_H$ globally.
- Metsch (2010): f not trivial \longrightarrow far away from trivial.
- Ramsey for vector spaces: Graham, Leeb, Rothschild (1972).
- The case k = 2 suffices: Filmus, Ih. (2019).

My key insight was that we can use **Ramsey theory**.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Coloring tl	ne Fano Plane			
Points of Fa	ano plane $= 1$ -spaces of no plane $= 2$ -spaces of	\mathbb{F}_{2}^{3}		

Can we color the points of the Fano plane black/red with **no monochromatic line**?

Cf. Ex. 14.1.4 in Discrete Mathematics: Elementary and Beyond by L. Lovász, J. Pelikán, and K. Vesztergombi.

Can we color the points of the Fano plane black/red with **no monochromatic line**?

Cf. Ex. 14.1.4 in Discrete Mathematics: Elementary and Beyond by L. Lovász, J. Pelikán, and K. Vesztergombi.

No! This shows $R_2(2;2) = 3$.

A formal definition of $R_q(s; m)$ follows on the **next slide**.

 Hypercubes
 Johnson Graphs
 Grassmann Graphs
 The Proof
 Remarks

 0000000000
 0000000
 0000000
 0000000
 000000

Ramsey Theory for Vector Spaces

Definition

A *m*-coloring of \mathbb{F}_q^n is a coloring of the 1-spaces of \mathbb{F}_q^n with *m* colors. The number $R_q(s;m)$ denotes the smallest integer *n* such that any *m*-coloring of \mathbb{F}_q^n possesses a monochromatic *s*-space.

Theorem (Graham, Leeb, Rothschild (1972))

The number $R_q(s;m)$ is finite.

Theorem (Graham, Leeb, Rothschild (1972))

Analogous result for affine spaces.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Applying F	Ramsey			

- Fix a 1-space P.
- **2** Goal: the coefficient of x_P .
- Say, only 896 coefficients can occur!
- $n \ge R_2(s_1; 896)$: monochromatic s_1 -space S_1 .

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Applying F	Ramsey			

- Fix a 1-space P.
- **2** Goal: the coefficient of x_P .
- Say, only 896 coefficients can occur!
- $n \ge R_2(s_1; 896)$: monochromatic s_1 -space S_1 .

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof ○○○●○○	Remarks
Applying F	Ramsey			

- Fix a 1-space P.
- **2** Goal: the coefficient of x_P .
- Say, only 896 coefficients can occur!
- $n \ge R_2(s_1; 896)$: monochromatic s_1 -space S_1 .
- $s_1 \ge R_2(s_2; 896)$: monochromatic affine s_2 -sp. S_2 in $H_2 \cap \langle S_1, P \rangle$.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Applying F	amsey			

- Fix a 1-space P.
- **2** Goal: the coefficient of x_P .
- Say, only 896 coefficients can occur!
- $n \ge R_2(s_1; 896)$: monochromatic s_1 -space S_1 .
- $\textbf{ o} \ s_1 \geq R_2(s_2; 896): \text{ monochromatic affine } s_2 \text{-sp. } S_2 \text{ in } H_2 \cap \langle S_1, P \rangle.$
- $s_2 \ge R_2(2;896)$: monochromatic affine 2-space in $\langle S_2, P \rangle$.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof ○○○○●○	Remarks
Limited W	eights			

Ramsey gives us that any ${\boldsymbol{P}}$ has one of the coefficients

$$\{-\frac{q}{q+1}, -\frac{q-1}{q}, -\frac{1}{q^2+q}, 0, \frac{1}{q}, \frac{1}{q+1}, 1-\frac{1}{q^2+q}, 1\}.$$

Proposition

If all coefficients are in
$$[-1, -\frac{q-1}{q+1}) \cup \{-\frac{1}{q^2+q}, 0, \frac{1}{q+1}, \frac{1}{q}\} \cup (\frac{q}{q+1}, 1]$$
, then f or $1 - f$ is one of $0, x_P, x_H, x_P + x_H$.

Proof.

- Drudge (1998),
- Metsch (2010),
- Some easy calculations.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof ○○○○○●	Remarks
What is $c_0(k$	(,q)?			

Other arguments: $c_0(2,2) = 2$.

Best known vector space Ramsey bound (I think):

Theorem (Frederickson, Yepremyan (2023, simplified))

 $R_2(s;m) \leq 2 \uparrow\uparrow ms.$

⁴Also, I did not check the estimate below too carefully.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof ○○○○○●	Remarks
What is $c_0(k,$	(q)?			

Other arguments: $c_0(2,2) = 2$.

Best known vector space Ramsey bound (I think):

Theorem (Frederickson, Yepremyan (2023, simplified)) $R_2(s;m) \le 2 \uparrow \uparrow ms.$

Ignoring the difference between affine/projective, this gives⁴

$$2 = c_0(2,2) \le R_2(R_2(R_2(2;896);896);896) - 2 \le 2 \uparrow\uparrow (896 \cdot (2 \uparrow\uparrow (896 \cdot (2 \uparrow\uparrow 896 \cdot 2)))) - 2 \gg 2.$$

Question

Does $c_0(2,q)$ grow in q?

⁴Also, I did not check the estimate below too carefully.

Hypercubes

Recent Breakthrough in Complexity Theory

The **Unique Games Conjecture** claims that it is impossible to approximate many **NP-hard** problems in polynomial time.

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))

Proof of the 2-to-2 Games Conjecture.^a

^aA slightly weakend Unique Games Conjecture.

Recent Breakthrough in Complexity Theory

The Unique Games Conjecture claims that it is impossible to approximate many NP-hard problems in polynomial time.

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))

Proof of the 2-to-2 Games Conjecture.^a

^aA slightly weakend Unique Games Conjecture.

What they had to show:

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))

Let $\alpha \in (0,1)$. There ex. $\epsilon > 0$ s.t. for sufficiently large k and sufficiently large n: If f on k-spaces in \mathbb{F}_2^n significant mass on low degree (measured by α), then there ex. A of const. dim. and B of const. codim. with

 $|\{x \in f : A \subseteq x \subseteq B\}| \ge \epsilon |\{x \ k\text{-space} : A \subseteq x \subseteq B\}|.$

Think of $\dim(A) = 1$ and $\dim(B) = n$. Then $f = A^+$ is example.

Problem: Pick a set of 1-spaces \mathcal{P} in \mathbb{F}_q^n such that $|L \cap \mathcal{P}| \in \{a, b\}$ for any k-space L. (two-intersecting set)

There are many examples for (n, k) = (3, 2), e.g., hyperovals.

Always: take a 1-space or a hyperplane.

(trivial examples)

Problem: Pick a set of 1-spaces \mathcal{P} in \mathbb{F}_q^n such that $|L \cap \mathcal{P}| \in \{a, b\}$ for any k-space L. (two-intersecting set)

There are many examples for (n, k) = (3, 2), e.g., hyperovals.

Always: take a 1-space or a hyperplane.

(trivial examples)

Theorem (Tallini Scafati (1976, simplified))

For (n,k) = (4,2), if there is a non-trivial two-intersecting set, then q is an **odd square**.

First open case is q = 9.

Theorem (Ih. (2024, AMS Proceedings, accepted))

For k fixed and n sufficiently large, all two-intersecting sets are trivial.

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks
Future Work				

Problem (Updated)

Investigate the behavior of $c_0(\mathbf{k}, \mathbf{q})$. Does it grow in q?

Problem (FKN)

Exists a non-trivial Boolean almost degree 1 function for $n \to \infty$?

Problem (Nisan-Szegedy)

On how many variables can a Boolean degree d function depend?

Problem

Can we improve the bounds for the **Ramsey number** $R_q(s;m)$?

Hypercubes	Johnson Graphs	Grassmann Graphs	The Proof	Remarks ○○○●

Thank you for your attention!