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A Simple Question

Let f : Rn → R be an affine function, that is

f(x) = c+
∑

cixi.

Definition
We call f Boolean over D if f(x) ∈ {0, 1} for all x ∈ D.

Question
What are the Boolean affine functions for the hypercube D = {0, 1}n?
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Dictator

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : x1.

We only need x1 to determine f(x).
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The Degree 1 Functions on the Hypercube

Example
The constant functions f(x) = 0 and f(x) = 1.

Example
The functions f(x) = xi and f(x) = 1− xi.

Proposition
Let f be an affine Boolean function on the hypercube.
Then f(x) = c+

∑
cixi is one of 0, 1, xi, or 1− xi.

Proof.
WLOG f(00 . . . 0) = 0. Hence, c = 0.
WLOG f(10 . . . 0) = 1. Hence, c1 = 1.
Now all the other ci’s must be 0.
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Degree 2, Example 1

00000001

00100011
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01100111
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11101111

Polynomial f : x1x2.

We only need x1, x2 to determine f(x).
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Degree 2, Example 2

00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

Polynomial f : 1− x1 + (x1 + x2 − 1)x3 + (x1 − x2)x4.

We need x1, x2, x3, x4 to determine f(x)!



Hypercubes Johnson Graphs Grassmann Graphs The Proof Remarks

Some Generalizations (I)

Question
What about Boolean degree 2 functions f on the hypercube?

Answer: Then f or 1− f is one of these:1

0,
xi,
xi + xj − xixj ,
xixj + (1− xi)xk,
xixj + xixk + xjxk − xi − xj − xk,
f(x) = 1 iff xi ≤ xj ≤ xk ≤ x` or xi ≥ xj ≥ xk ≥ x`.

Degree 2: Camion, Carlet, Charpin & Sendrier (1991).
Degree 3: Kirienko (2004), Zverev (2008).

1I stole this list from Yuval Filmus.



Hypercubes Johnson Graphs Grassmann Graphs The Proof Remarks

Some Generalizations (II)

Question
What about Boolean degree d functions f on the hypercube?

Only m relevant variables: m-junta.

Theorem (Nisan, Szegedy (1991))

A Boolean degree d function on the hypercube is a d · 2d−1-junta.

Chiarelli, Hatami and Saks (2018): Tight bound of O(2d).
Current best by Wellens (2019): ≤ 4.416 · 2d.

Carlet and Tarannikov (2002): Lower bound of 3 · 2d−1 − 2.

Two applications: cryptography, complexity theory. One C in G2C2!
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Some Generalizations (III)

Question
What about almost affine Boolean functions f on the hypercube?

That is,‖f − g‖2 < ε for some affine function g.

Friedgut, Kalai, and Naor (2002): If f is Boolean and almost affine,
then f is almost a Boolean affine function.

Kindler, Safra (2002): Similar result for degree d.
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Some Other Words

We already know: Boolean degree 1 function.

Other used words which might mean the same (depending on context):

Equitable bipartition.
Regular set.
Perfect 2-coloring.
Cameron-Liebler set.
Completely regular code.
Tight set.
Anti-1-design.
Dual degree 1.
Graphical design.
Intriguing set.
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“What should we do then?” Luke 3:10, NIV3

In the hypercube: Good understanding of low degree functions.

What about other domains?

For instance:
A slice of the hypercube: all k-sets of {1, . . . , n} (Johnson graphs).
The q-analog of the slice: all k-spaces of Fn

q (Grassmann graphs).

We will look at k-sets and k-spaces.2

See Dafni, Filmus, Lifshitz, Lindzey, and Vinyals (2020) for results on Sym(n).

They use a convex polytope! One C in G2C2!

2Cf. Kiermaier, Mannaert, Wassermann (2024).
3Alternative quotes: “What is to be done?”. Tolstoy, 1866; Lenin, 1902.
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Subsets

0000

0001 0010 0100 1000

0011 0101 0110
1001 1010 1100

0111 1011 1101 1110

1111

Theorem
Boolean degree 1 functions on k-sets of {1, . . . , n} are trivial .
I.e. they are dictators (0, 1, xi or 1− xi). (For n−k, k ≥ 2.)

Various proofs: Meyerowitz (1992, see Martin (2004)), Filmus (2016),
Filmus and Ih. (2019). Also De Boeck, Strome, Svob (2016), but only for k | n.
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Bounded Degree

Recall FKN for hypercube:
Boolean almost degree 1 −→ almost dictator.
For k-sets of {1, . . . , n}:

Theorem (Filmus (2016))
Boolean almost degree 1 −→ almost sum of dictators (or complement).

Recall for hypercube: Boolean degree d −→ γ(d)-junta.

Theorem (Filmus, Ih. (2019))

If min(k, n− k) ≥ Cd: Boolean degree d −→ γ(d)-junta.

Keller, Klein (2019): stability version.

Theorem (Filmus (2023))
If min(k, n− k) ≥ 2d: Boolean degree d −→ γ′(d)-junta.

Note: We have γ(2) = 4, but there is an example in J(8, 4) with 5 relevant variables,
so γ′(2) 6= γ(2).
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Vector Spaces

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

We consider k-spaces of a finite vector space!
Degree 1: f =

∑
P cPxP , P ’s are 1-spaces.

Here xP (S) = 1 if P ⊆ S and xP (S) = 0 otherwise.

Degree 1, alternative: f =
∑

H cHxH , H’s are (n− 1)-spaces.
Here xH(S) = 1 if S ⊆ H and xH(S) = 0 otherwise.
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Trivial Degree 1 in Vector Spaces (I)

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

Example (Trivial Example 1)
Take all k-spaces through a fixed 1-space P : xP .

Or the complement: 1− xP . (This is always possible.)
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Trivial Degree 1 in Vector Spaces (II)

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

Example (Trivial Example 2)
Take all k-spaces in a fixed hyperplane H: xH .

Degree 1 in xP ’s? Write H = α
∑

P⊆H xP + β
∑

P*H xP .
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Trivial Degree 1 in Vector Spaces (III)

1-spaces

2-spaces

3-spaces

The subspace lattice of F4
2.

Example (Trivial Example 3)
All through 1-space P or in hyperplane H: xP + xH .

Or the complement: 1− xP − xH .
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Degree 1 Functions on 2-spaces in Fn
q

Cameron, Liebler (1982): Investigate action of subgroups of PΓL(4, q)
on 1- and 2-spaces of F4

q.

Same number of orbits: Boolean degree 1 function.

Conjecture (Cameron, Liebler (1982, very simplified))
If Boolean degree 1 function f on 2-spaces, then f or 1− f is …

0,
xP for a 1-space P ,
xH for a hyperplane H, or
xP + xH for a 1-space P and a hyperplane H, P * H.

Conjecture very natural: true for subsets.
True for 2-spaces of Fn

2 by Drudge (1998).
False for 2-spaces of F4

q: First counterexample for q = 3 by Drudge
(1998), later many more for (n, k) = (4, 2).
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State of the Art

For 2-spaces in F4
q many counterexamples, e.g.:

Bruen, Cossidente, De Beule, Demeyer, Drudge, Feng, Gavrilyuk, Matkin,
Metsch, Momihara, Pavese, Penttila, Rodgers, Xiang, Zou.

Restrictions on sizes of non-trivial examples for 2-spaces in F4
q, e.g.:

Metsch (2010),
Metsch (2014),
Gavrilyuk, Metsch (2014).

Restrictions in a more general setting:
Metsch (2017),
Rodgers, Storme, Vansweevelt (2018),
Blokhuis, De Boeck, D’haeseleer (2019),
De Beule, Mannaert, Storme (2022),
Ihringer (2024?),
De Beule, Mannaert, Storme (2024?).
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Classification Results

Boolean degree 1 functions f on k-spaces for n > 4:

Theorem (Drudge (1998), Gavrilyuk and Mogilnykh (2014), Gavrilyuk
and Matkin (2018), Matkin (2018))
All trivial for k = 2 and q ∈ {2, 3, 4, 5}.

Proof: Clever computations and induction on n.

Theorem (Filmus, Ih. (2019))
All trivial for k ≥ 2 and q ∈ {2, 3, 4, 5}.

Proof: Induction on k.

Theorem (Ih. (2024, AMS Proceedings, accepted))
All trivial for k ≥ 2 and max(n− k, k) ≥ c0(k, q).

This insight came a day after much Moutai, Tsingtao beer, and KTV.
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The Structure of the Proof

The proof relies on …

1 Structural Results:
Drudge (1998): f(x) = xP locally −→ f(x) = xP globally.
Drudge (1998): f(x) = xP+xH locally −→ f(x) = xP+xH globally.
Metsch (2010): f not trivial −→ far away from trivial.

2 Ramsey for vector spaces: Graham, Leeb, Rothschild (1972).
3 The case k = 2 suffices: Filmus, Ih. (2019).

My key insight was that we can use Ramsey theory.
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Coloring the Fano Plane

Points of Fano plane = 1-spaces of F3
2.

Lines of Fano plane = 2-spaces of F3
2.

Question
Can we color the points of the Fano plane black/red with no
monochromatic line?
Cf. Ex. 14.1.4 in Discrete Mathematics: Elementary and Beyond by L. Lovász, J. Pelikán, and K. Vesztergombi.

No! This shows R2(2; 2) = 3.

A formal definition of Rq(s;m) follows on the next slide.
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Ramsey Theory for Vector Spaces

Definition
A m-coloring of Fn

q is a coloring of the 1-spaces of Fn
q with m colors.

The number Rq(s;m) denotes the smallest integer n such that any
m-coloring of Fn

q possesses a monochromatic s-space.

Theorem (Graham, Leeb, Rothschild (1972))
The number Rq(s;m) is finite.

Theorem (Graham, Leeb, Rothschild (1972))
Analogous result for affine spaces.
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Applying Ramsey

P

S1

How to apply Ramsey? Example for q = 2.
1 Fix a 1-space P .
2 Goal: the coefficient of xP .
3 Say, only 896 coefficients can occur!
4 n ≥ R2(s1; 896): monochromatic s1-space S1.

5 s1 ≥ R2(s2; 896): monochromatic affine s2-sp. S2 in H2 ∩ 〈S1, P 〉.
6 s2 ≥ R2(2; 896): monochromatic affine 2-space in 〈S2, P 〉.
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S2
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Limited Weights

Ramsey gives us that any P has one of the coefficients

{− q

q + 1
,−q − 1

q
,− 1

q2 + q
, 0,

1

q
,

1

q + 1
, 1− 1

q2 + q
, 1}.

Proposition

If all coefficients are in [−1,− q−1
q+1 ) ∪ {− 1

q2+q , 0,
1

q+1 ,
1
q} ∪ ( q

q+1 , 1],
then f or 1− f is one of 0, xP , xH , xP + xH .

Proof.
Drudge (1998),
Metsch (2010),
Some easy calculations.
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What is c0(k, q)?

Other arguments: c0(2, 2) = 2.

Best known vector space Ramsey bound (I think):

Theorem (Frederickson, Yepremyan (2023, simplified))
R2(s;m) ≤ 2 ↑↑ ms.

Ignoring the difference between affine/projective, this gives4

2 = c0(2, 2) ≤ R2(R2(R2(2; 896); 896); 896)− 2

≤ 2 ↑↑ (896 · (2 ↑↑ (896 · (2 ↑↑ 896 · 2))))− 2 � 2.

Question
Does c0(2, q) grow in q?

4Also, I did not check the estimate below too carefully.
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Recent Breakthrough in Complexity Theory

The Unique Games Conjecture claims that it is impossible to
approximate many NP-hard problems in polynomial time.

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))
Proof of the 2-to-2 Games Conjecture.a

aA slightly weakend Unique Games Conjecture.

What they had to show:

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))
Let α ∈ (0, 1). There ex. ε > 0 s.t. for sufficiently large k and sufficiently
large n: If f on k-spaces in Fn

2 significant mass on low degree
(measured by α), then there ex. A of const. dim. and B of const.
codim. with

|{x ∈ f : A ⊆ x ⊆ B}| ≥ ε|{x k-space : A ⊆ x ⊆ B}|.

Think of dim(A) = 1 and dim(B) = n. Then f = A+ is example.
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Two-Intersecting Sets

Problem: Pick a set of 1-spaces P in Fn
q such that |L ∩ P| ∈ {a, b} for

any k-space L. (two-intersecting set)

There are many examples for (n, k) = (3, 2), e.g., hyperovals.

Always: take a 1-space or a hyperplane. (trivial examples)

Theorem (Tallini Scafati (1976, simplified))
For (n, k) = (4, 2), if there is a non-trivial two-intersecting set, then q is
an odd square.

First open case is q = 9.

Theorem (Ih. (2024, AMS Proceedings, accepted))
For k fixed and n sufficiently large, all two-intersecting sets are trivial.
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Future Work

Problem (Updated)
Investigate the behavior of c0(k,q). Does it grow in q?

Problem (FKN)
Exists a non-trivial Boolean almost degree 1 function for n → ∞?

Problem (Nisan-Szegedy)
On how many variables can a Boolean degree d function depend?

Problem
Can we improve the bounds for the Ramsey number Rq(s;m)?
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Thank you for your attention!
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