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§1. Introduction.

The classification problem of P-and Q-polynomial association schemes has been
one of the most important problems in algebraic combinatorics. Cf. Bannai-Ito,
Algebraic Combinatorics I : Association Schemes, Benjamin-Cummings (1984).

The theorem of Leonard (1982) that the spherical functions (and the charac-
ter table) of P-and Q-polynomial association schemes can be described by Askey-
Wilson orthogonal polynomials and their relatives (namely including special cases
and limiting cases) was the important starting point.

These are one variable (discrete) orthogonal polynomials. So, the following
questions naturally arise.
(i) Is there a good generalization of the concept of P-and Q-polynomial association
schemes? (Namely, is there a concept of higher rank P-and Q-polynomial associa-
tion schemes?)
(ii) What are the orthogonal polynomials appearing in the higher rank P-and Q-
polynomial association schemes? (Namely, is there a higher rank analogue of the
Leonard’s theorem?)
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Frankly speaking, for (i) there have been only very limited studies on higher
rank P- and Q-polynomial association schemes at the level of association schemes.
This was because the concept was not well formulated, and not much examples were
explicitly known, except for in some work of Mizukawa-Tanaka, Gasper-Rahman,
Iliev-Terwillger, etc. (Mostly, symmetrizations of association schemes.) While, for
(ii) at the level of orthogonal polynomials, multivariate version of Askey-Wilson
polynmials have been known, see e.g., Tratnik. However, these are very special
cases of generalizations, and they do not cover general cases of multivariate or-
thogonal polynomials corresponding to higher rank P-and Q-polynomial associa-
tion schemes. Namely, higher rank version of the theorem of Leonard is still very
far away, in my opinion. (I will specify this remark later in my talk.)

In this talk, we first discuss the concept of multivariate P-and Q- polynomial
association schemes, then discuss some families of explicit examples, and finally we
mention many speculations on which directions this research should proceed.
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The first very successful attempt was made by the recent work of [BCdVZ]
Bernard, Crampé, d’Andecy, Vinet, Zaimi: Bivariate P-polynomial association
schemes, arXiv:2212.10824 (just published in Algebraic Combinatorics, 2024). They
[BCdVZ] defined the concept of bivariate P-polynomial association schemes of type
(α, β) as well as Q-polynomial association schemes of type (α, β), and studied these
concept as well as many such examples.

What I want to talk today is our attempts to generalize their work. Our research
was strongly motivated by their work [BCdVZ].
In particular,
(i) We want to define a similar concept in a more general context, i.e., for any
monomial order beyond (α, β)-type.
(ii) We want to consider general multivariate case beyond the bivariate case.

Our paper [BKZZ] Bannai, Kurihara, Zhao, Zhu: Multivariate P- and/or Q-
polynomial association schemes, is seen in arXiv: 2205.00707v2.
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§2. Multivariate P- or Q-polynomial association schemes

Let N = {0, 1, 2, ...} be the set of natural numbers, and let

Nℓ := {(n1, n2, ..., nℓ) | ni ∈ N}.

Definition 2.1. (monomial order). A monomial order ≤ is an order on Nℓ satisfying
the following three conditions (a), (b) and (c).
(a) ≤ is a total order,
(b) For α, β, γ ∈ Nℓ, if α ≤ β, then α + γ ≤ β + γ.
(c) ≤ is a well ordering, i.e., any non-empty subset of Nℓ has a minimum element
under ≤.

Examples of monomial orders.
• lex order (lexicographic order). Let α = (n1, n2, ..., nℓ),
β = (m1,m2, ...,mℓ) ∈ Nℓ. We define α ≤lex β if the left most nonzero entry of
α − β ∈ Zℓ is negative.
• grlex order (graded lexicographic order). α ≤grlex β, if |α| < |β| or both |α| = |β|
and α ≤lex β hold, where |α| = n1 + n2 + · · · + nℓ and |β| = m1 + m2 + · · · + mℓ.
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The concept of bivariate P-polynomial association scheme (as well as Q-polynomial
association scheme) was defined by BCdVZ with respect to the so called (α, β)-
order, where 0 ≤ α ≤ 1 and 0 ≤ β < 1. Motivated by their work, we have suc-
ceeded in defining a similar concept for any general monomial order. This new
definition does not cover all the case of (α, β)-order by BCdVZ completely, but
more general. We believe that this new definition is conceptually very natural and
has the advantage of working for arbitrary ℓ (not just for the bivariate case).

For α = (n1, n2, ..., nℓ) ∈ Nℓ and x = (x1, x2, ..., xℓ), we write the monomial xn1
1 xn2

2 · · ·xnℓ
ℓ

by xα. Then α is called the multidegree of xα.
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Definition 2.2. (The original definition in our arXiv paper). Let D ⊂ Nℓ,
ei = (0, ..., 0, 1, 0, ..., 0) ∈ D (the ith coordinate is 1), and let ≤ be a monomial or-
der in Nℓ. A commutative association scheme
X = (X, {Ri}(i=0,1,...,d)) is called ℓ-variate P-polynomial on the domain D with re-
spect to the monomial order ≤, if the following three conditions (i),(ii) and (iii)
are satisfied.

Condition (i). If (n1, n2, ..., nℓ) ∈ D and 0 ≤ mi ≤ ni(i = 1, 2, ..., ℓ). Then
(m1,m2, ...,mℓ) ∈ D.

Condition (ii). There exists a relabelling of the adjacency matrices of X:
{A0, A1, ..., Ad} = {Aα}α∈D such that for each α ∈ D, Aα =
vα(Ae1, Ae2, ..., Aeℓ) where the ℓ-variate P-polynomial vα(x) is expressed as
vα(x) =

∑
β∈D cβx

β with β ≤ α and cα ̸= 0.

Condition (iii). For i = 1, 2, ..., ℓ and α = (n1, n2, ..., nℓ) ∈ D, the product
Aei An1

e1
An2

e2
· · ·Anℓ

eℓ
is a linear combination of

{Am1

e1
Am2

e2
· · ·Amℓ

eℓ
| β = (m1,m2, ...,mℓ) ∈ D, β ≤ α + ei}.
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Motivated by the work of BCdVZ, we get the following:

Proposition 2.3. Let D ⊂ Nℓ, and let e1, e2, ..., eℓ be in D. Let X = (X, {Aα}α∈D) be
a commutative association scheme. Then the following two statements are equiva-
lent.
(i) X is an ℓ-variate P-polynomial association scheme (with the relations indexed
by D) with respect to a monomial order ≤ .
(ii) The condition (i) of Definition 2.2 holds for D and the intersection numbers sat-
isfy for each i = 1, 2, ..., ℓ and each α ∈ D, pβ

ei,α
̸= 0 for β ∈ D implies β ≤ α + ei.

Moreover, if α + ei ∈ D, then pα+ei
ei,α

̸= 0 holds.

Similarly, we can define multivariate Q-polynomial association schemes.
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Definition 2.4. Let D∗ ⊂ Nℓ, ei = (0, ..., 0, 1, 0, ..., 0) ∈ D∗ (the ith coordinate is
1), and let ≤ be a monomial order in Nℓ. A commutative association scheme
X = (X, {Ri}(i=0,1,...,d)) is called ℓ-variate Q-polynomial on the domain D∗ with
respect to the monomial order ≤, if the following three conditions (i),(ii) and (iii)
are satisfied.

Condition (i). If (n1, n2, ..., nℓ) ∈ D∗ and 0 ≤ mi ≤ ni(i = 1, 2, ..., ℓ). Then
(m1,m2, ...,mℓ) ∈ D∗.

Condition (ii). There exists a relabelling of the primitive idempotents of X:
{E0, E1, ..., Ed} = {Eα}α∈D∗ such that for each α ∈ D∗, |X|Eα = v∗

α(|X|Ee1, |X|Ee2, ..., |X|Eeℓ)
where v∗

α(x) is expressed as v∗
α(x) =

∑
β∈D∗ c∗βx

β with β ≤ α and c∗α ̸= 0. (Here, the
multiplication is Hadamard product ◦.)

Condition (iii). For i = 1, 2, ..., ℓ and α = (n1, n2, ..., nℓ) ∈ D∗, the product
(Eei) ◦ (Ee1)

n1 ◦ (Ee2)
n2 ◦ · · · ◦ (Eeℓ)

nℓ is a linear combination of

{Em1

e1
◦ Em2

e2
◦ · · · ◦ Emℓ

eℓ
| β = (m1,m2, ...,mℓ) ∈ D∗, β ≤ α + ei}.
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Proposition 2.5. Let D∗ ⊂ Nℓ, and let e1, e2, ..., eℓ be in D∗. Let X be a commuta-
tive association scheme. Then the following two statements are equivalent.
(i) X is an ℓ-variate Q-polynomial association scheme (with the primitive idempo-
tents indexed by D∗) with respect to a monomial order ≤ .
(ii) The condition (i) of Definition 2.4 holds for D∗ and the dual intersection num-
bers satisfy for each i = 1, 2, ..., ℓ and each α ∈ D∗, qβ

ei,α
̸= 0 for β ∈ D∗ implies

β ≤ α + ei. Moreover, if α + ei ∈ D∗, then qα+ei
ei,α

̸= 0 holds.
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Discussions of some explicit examples.

We consider the following families of examples, mostly following
T. Ceccerini-Silberstein, F. Scarabotti and F. Tolli: Trees, wreath prod-
ucts and finite Gelfand pairs, Advances in Math. (2006).

I. Direct products.

II. Compositions.

III. A.S. coming from attenuated spaces.

IV. A.S. coming from isotropic subspaces.

V. Symmetrizations. (Extensions, or Generalized Hamming schemes.)

VI. Generalized Johnson schemes.
(Including non-binary Johnson schemes.)
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We study each family more closely. (They are not exhaustive.)

I. Direct products.

The direct product of two P- (or Q-)polynomial association schemes becomes
obviously a bivariate P- (or Q-)polynomial association scheme, in the sense of
BCdVZ and also in the sense of BKZZ.

II. Composition of Gelfand pairs.

Let (G,K) and (F,H) be Gelfand pairs of finite groups. Let X = G/K and
Y = F/H. Let F ≀ G be the wreath product of F by G. Namely,

FX × G = {(f, g) | f : X → F, g ∈ G},

and (f, g)(f ′, g′) = (f · (gf ′), gg′), where [f · (gf ′)](x) = f(x)f ′(g−1x) for all x ∈ X.
We consider the action of the wreath product group F ≀ G on X × Y by
(f, g)(x, y) = (gx, f(gx)y), for (f, g) ∈ F ≀ G and (x, y) ∈ X × Y. Let x0 ∈ X be
the fixed point in X by K, and let y0 ∈ Y be the fixed point by F. Then the
stabilizer J ≤ G of the point (x0, y0) by the action of F ≀ G on X × Y is given by

J = {(f, k) ∈ F ≀ G | k ∈ K, f(x0) ∈ H}.
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Let X = ∪n
i=0Ξi and Y = ∪m

j=0Γj be the decomposition of X and Y by the actions
of G and F respectively (with Ξ0 = {x0} and Γ0 = {y0}). Then the decomposition
of X × Y by J-orbits is given by

X × Y = [∪m
j=0(Ξ0 × Γj] ∪ [∪n

i=1(Ξi × Y )].

Suppose that (G,K) and (F,H) are Gelfand pairs and let L(X) = ⊕n
i=0Vi and

L(Y ) = ⊕m
j=0Wj be the decomposition into G-(respectively F -) irreducible repre-

sentations, where V0 and W0 are the one-dimensional subspaces of constant func-
tions. It is known that (F ≀ G, J) is a Gelfand pair. Moreover, the decomposition
of L(X × Y ) into (F ≀ G)-irreducible subspaces is given by

L(X × Y ) = [⊕n
i=0(Vi ⊗ W0)] ⊕ [⊕m

j=1(L(X) ⊗ Wj)].

Let X and Y be the association schemes obtained by the Gelfand pairs (G,K) and
(F,H), respectively. Then the association scheme obtained by the Gelfand pair
(F ≀ G, J) is called the composition of X and Y. Note that the composition of X
and Y is a fusion scheme of the direct product association scheme X ⊗ Y.
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Theorem 3.1. Let Z be the composition of X and Y.
(i) If X and Y are P-polynomial association schemes, then Z is a bivariate P-
polynomial association scheme on

D = {(i, 0)}n
i=1 ∪ {(0, j)}m

j=0 ⊂ N2

worth respect to ≤lex .
(ii) If X and Y are Q-polynomial association schemes, then Z is a bivariate Q-
polynomial association scheme on

D∗ = {(j, 0)}m
j=1 ∪ {(0, i)}n

i=0 ⊂ N2

with respect to ≤lex .
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III. A.S. coming from attenuated spaces.

Let FD+L
q be the (D + L)-dim vector space over the finite field Fq. Let W be a

fixed subspace of dimensin L. Let X be the set of all d-dimensional subspaces V
with V ∩ W = {0}. (So, obviously d ≤ D.)
Let D be the index set defined by

D = {(i, j) ∈ N2 | i ≤ min(d,D − d), j ≤ min(d − i, L)}.

(This domain is a triangle shape if d ≤ L and D ≥ 2d.) For U,U ′ ∈ X, let Ri,j be
defined by (U,U ′) ∈ Ri,j if and only if dim((U + W )/W ∩ (U ′ + W )/W ) = m − i
and dim(U ∩ U ′) = (d − i) − j. Then X = (X, {Ri,j}) with (i, j) ∈ D becomes a
symmetric association scheme, called the association scheme coming from attenu-
ated space.

BCdVZ proved that, if d ≤ L, it is bivariate P-polynomial of type (1, 0). We
point out that this association scheme is also shown to be a bivariate P-polynomial
in our sense with respect to the order ≤grlex even if L < d.

Actually, we get that D∗ = D in this case, where D∗ is the set parametrizing
the primitive idempotents of the association scheme.
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We want to explain the following result.

Theorem 3.2. [BKZZ2]. The association scheme coming from attenuated space is
bivariate Q-polynomial association scheme in our sense (with respect to the ≤grlex)
for any pair of L and d, i.e., even if L < d). Therefore, the association scheme
coming from attenuated space is always bivariate P- and Q-polynomial association
scheme (with respect to the ≤grlex).

[BKZZ2] Bannai-Kurihara-Zhao-Zhu, Bivariate Q-polynomial structures for the
nonbinary Johnson scheme and the association scheme obtained from attenuated
spaces, arXiv:2403.05169 (just accepted in J. of Algebra).
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IV. Association schemes coming from isotropic subspaces.

Consider the vector space FD
q with a non-degenerate form, i.e., alternating form,

symmetric form, hermitian form, etc.. Let X be the set of isotropic subspaces of
dimension d. For V, V ′ ∈ X, let

Ri,j = {(V, V ′) ∈ X × X | dim(V ∩ V ′) = d − i − j, dim(V ⊥ ∩ V ′) = d − i}.

D = {(i, j) | 0 ≤ i ≤ d − j, 0 ≤ j ≤ min(d,D − d)}.

Then we have a commutative (symmetric) association scheme with the parame-
ter set D. BCdVZ proved that it is generally bivariate P-polynomial association
scheme in their sense. (It is also shown that it is generally bivariate P-polynomial
association scheme in our sense.

The spherical functions are explicitly calculated by Stanton (1980) for most cases
explicitly, but extremely involved. It is conjectured that they are also bivariate Q-
polynomial, but it is not yet proved in general. (A very important open problem.)
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V. Symmetrizations. (Extensions, or Generalized Hamming schemes.)

Le X = (X, {Ri}ℓ
i=0) be a commutative association scheme of class ℓ. Let n

be a positive integer. For x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Xn. For each
i(0 ≤ i ≤ ℓ) set τi(x, y) = |{t = 1, 2, ..., n | (xt, yt) ∈ Ri}|. Then we define the ℓ-
tuple

R(x, y) = (τ1(x, y), τ2(x, y), ..., τℓ(x, y)).

Then all R(x, y) are in D = {α ∈ Nℓ | |α| ≤ n}. Then Sn(X) = (Xn,R) is a com-
mutative association scheme and called extension (or symmetrization) of X of
length n. Sn(X) is a fusion scheme of the n-times direct product

⊗
Xn of X.

Theorem 3.3 Sn(X) is an ℓ-variate P-polynomial and Q-polynomial association
scheme on D with respect to ≤grlex .
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Note that if the association scheme X is a Gelfand pair (F,H), then Sn(X) is a
Gelfand pair (F ≀ Sn,H ≀ Sn).

We remark that the spherical functions (as well as character tables) of such
association schemes are calculated, i.e., expressed by certain hypergeometric series,
Aomoto-Gelfand hypergeometric functions, see e.g., Mizukawa-Tanaka, etc.
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VI. Generalized Johnson schemes.
(Including non-binary Johnson schemes.)

First, we consider the special case of non-binary Johnson association scheme,
Jr(n, k).

Let n and r be positive integers with r ≥ 2 and let k be a natural number such
that 0 ≤ k ≤ n. Let K = {0, 1, ..., r − 1} be a set of cardinality r. For a vector
x = (x1, x2, ..., xn) ∈ Kn, its weight w(x) is defined by the number of nonzero en-
tries. Let S = {x ∈ Kn | w(x) = k}. Then |S| = (r − 1)k

(
n

k

)
. Let

D = {(i, j) | i + j ≤ k, 0 ≤ i ≤ min(k, n − k)}. Let Ri,j be defined as (x, y) ∈ Ri,j,
if |{i | xi = yi ̸= 0}| = k − i − j and |{i | xi ̸= 0, yi ̸= 0}| = k − j. Then, (S, {Ri,j})
with (i, j) ∈ D becomes a commutative (symmetric) association scheme called non-
binary Johnson association schemes Jr(n, k). (If r = 2, then Jr(n, k) is the John-
son scheme J(n, k) and if k = n, then Jr(n, k) is the Hamming association scheme
H(n, r).)
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It was shown by BCdVZ that the non-binary Johnson association scheme is
bivariate P-polynomial association scheme (of type (1, 0)). Crampé-Vinet-Zaimi-
Zhang: A bivariate Q-polynomial structure for the nonbinary Johnson scheme
(JCT(A), 2024) proved that non-binary Johnson association scheme is bivariate Q-
polynomial, if 2k ≤ n, namely, the domain D is of triangular type. Then, [BKZZ2]:
Bivariate Q-polynomial structures for the nonbinary Johnson scheme and the asso-
ciation scheme obtained from attenuated spaces, arXiv:2403.05169 (just accepted
in J. of Algebra) proved that non-binary Johnson association scheme is always bi-
variate Q-polynomial (for any shape of D), i.e., even if 2k > n.

Now, we want to consider generalized Johnson schemes in general.
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Let (F,H) be a Gelfand pair, and let Y = F/H with y0 ∈ Y being the point

stabilized by H. Let Y = ∪m
i=0Λi be the decomposition of Y into its H-orbits with

Λ0 = {y0}. Let 0 ≤ h ≤ n. Let Ωh(= Sn/(Sn−h × Sh) ∼= J(n, k)) be the set of h-
elements subset of {1, 2, ..., n}. Let Θh = Y Ωh = ∪A∈Ωh

Y A = the set of all functions
θ from Ωh to Y.

Then F ≀ Sn acts naturally on Θh transitively, with the stabilizer of the point is
∼= (H ≀ Sh) × (F ≀ Sn−h) .

(Exactly speaking, if (f, π) ∈ F ≀ Sn and θ ∈ Θh then (f, π)(θ) is the function,
with domain π domain(θ) defined by

[(f, π)θ](j) = f(j)θ(π−1j).

for every j ∈ π domain(θ).)
Now, the relations R of this Gelfand pair Θh are parametrized by the set

{(t, a0, a1, ..., am) | 0 ≤ t ≤ min{h, n − h} with a0 + a1 + · · · + am = h − t}.
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Thus, X = (Θh,R) becomes a commutative association scheme parametrized by

D = {(t, a1, ..., am)Nm+1 | 0 ≤ t ≤ min{h, n − h}, ai ≥ 0, with a0 + a1 + · · · + am = h − t}.

Exactly speaking, for θ1 and θ2 ∈ Θh, we have |domain(θ1) ∩ domain(θ2)| = h − t
and

ai = |{a ∈ domain(θ1) ∩ domain(θ2) | (θ1(a), θ2(a)) ∈ Λi}|

for i = 0, 1, ...,m.

Theorem 3.4 (BKZZ). If (F,H) is a Gelfand pair of class ℓ, then (F ≀ Sn, (H ≀ Sh) × (F ≀ Sn−h))
becomes a (ℓ + 1)-variate P-polynomial association scheme in our sense.

Note that (F,H) need not to be P-polynomial, i.e., just any Gelfand pair. (This
is a bit surprizing!) We conjecture that a similar result will hold for Q-polynomial
case, but it is not yet proved. (An important open problem!) We mention that
the non-binary Johnson scheme J(v, n) is the special case of generalized Johnson
association scheme with (F,H) = (Sq−1, Sq−2).
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Speculations

Multivariate P and Q-polynomial association scheme from root system

Iliev-Terwilliger: The Rahman polynomials and the Lie algebra sl3(C), Trans. AMS
(2012), considers some multivariate P-polynomial (and/or Q-polynomial) associa-
tion schemes from the root system, in particular of type An and possibly for other
types. Here, we give the definition of AM -Leonard pair, following Iliev-Terwilliger
and Crampé-Zaimi: Factorized AM -Leonard pair (arXiv:2312.08312).

Let F denote a field, and let V be a finite dimensional vector space over F. Let
End(V ) be the set consisting of F-linear maps from V to V. For integers M,N ≥ 1,
let

D = {α ∈ NM | |α| ≤ N}.

(So, D is an isosceles right triangle shape and |D| =
(
M+N

M

)
.)

A pair of elements (r1, ..., rM) and (r′
1, ..., r

′
M) in D is called adjacent if

(r1 − r′
1, ..., rM − r′

M) is a permutation of an element in

{(0, 0, ..., 0), (1,−1, 0, ..., 0), (1, 0, 0, ..., 0), (−1, 0, 0, ..., 0)}.
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Definition 4.1 The pair (H, H̃) is an AM -Leonard pair on the domain D if the
following conditions (i) to (vii) are satisfied.

(i) H is an M -dimensional subspace of End(V ) whose elements are diagonalizable
and mutually commute.
(ii) H̃ is an M -dimensional subspace of End(V ) whose elements are diagonalizable
and mutually commute.
(iii) There exists a bijection α 7→ Vα from D to the set of common eigenspaces of
H such that for all α ∈ D,

H̃Vα ⊂
∑

β∈D, β adj α

Vβ.

(iv) There exists a bijection α 7→ Ṽα from D to the set of common eigenspaces of
H such that for all α ∈ D,

HṼα ⊂
∑

β∈D, β adj α

Ṽβ.

(v) There does not exist a subspaceW of V such that HW ⊂ W, H̃W ⊂ W,W ̸= 0,W ̸= V.
(vi) Each of Vα, Ṽα has dimension 1 for α ∈ D.
(vii) There exists a nondegenerate symmetric bilinear form ⟨, ⟩ on V such that
both

⟨Vα, Vβ⟩ = 0, if α, β ∈ D, ⟨Ṽα, Ṽβ⟩ = 0, if α, β ∈ D,
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I think there is still a room of discussion what is the most reasonable definition
of AM -Leonard pair. For example, in the above definition, D = D∗ is assumed.
Should we also consider the case of D ̸= D∗.
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Definition 4.2. A symmetric association scheme X is called an AM multivariate
P-polynomial or Q-polynomial association scheme on D = {α ∈ NM | |α| ≤ N} if
the following conditions are satisfied.
(a) X is an M-variate P-polynomial association scheme on D for some monomial
order ≤1 such that for α ∈ D and i = 1, 2, ...,M, if pβ

ei,α
̸= 0 then β is adjacent to

α.
(b) X is an M -variate Q-polynomial association scheme on D for some monomial
order ≤2 such that for α ∈ D and i = 1, 2, ...,M, if qβ

ei,α
̸= 0 then β is adjacent to

α.

Theorem 4.3. An AM multivariate P- and Q-polynomial association scheme on
D = {α ∈ NM | |α| ≤ N} has the structure of AM -Leonard pairs for F = C.

Corollary 4.4. If the domain D of a non-binary Johnson association scheme and
the association scheme obtained from attenuated space becomes an isosceles right
triangle, then each of these association scheme has the structure of A2-Leonard
pair.
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Factored A2-Leonard pairs

Crampé-Zaimi: Factored A2-Leonard pair (ArXiv:2312.08312v3), considers the fol-
lowing very restricted class of A2-Leonard pairs. We will not discuss the details of
this definition, but the essence of it is that the spherical functions are expressed
as a product of two of one-variate Askey-Wilson orthogonal polynomials, resulting
so called Tratnik type bivariate orthogonal polynomials.

The non-binary Johnson association schemes and attenuated spaces are exam-
ples of factored A2-Leonard pairs, if the domain D is an isosceles right triangle. For
example, the Gelfand pair (W (Cn),W (Cn)J), where J = {1, 2, ..., n} − {i}(2 ≤ i ≤ n − 2)
gives a factored A2-Leonard pair. This Gelfand pair (commutative association
scheme) is in fact imprimitive. We can see that a factored A2-Leonard pair must
be imprimitive. On the other hand, the corresponding Gelfand pair (G,GJ) (where
G is the Chevalley group of type Cn and GJ is the parabolic subgroup correspond-
ing to J is primitive. So, (G,GJ) cannot be a factored A2-Leonard pair. (It seems
that (G,GJ) is in fact bivariate P-and Q-polynomial association scheme, but this
is still yet to be proved.) Anyway, the spherical functions are not expressed by
Tratnik type.
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Conclusions

It would be very important to try to get the multivariate version of Leonard
Theorem, namely to get the spherical functions (as well as character tables) of mul-
tivariable P-and Q-polynomial association schemes, or to determine higher rank
Leonard pairs. As we have discussed, this is not easy at all, and we still do not
have a good picture. As we discussed already, these spherical function include those
of symmetrizations of (commutative) association schemes or those of association
schemes coming from isotropic subspaces. Perhaps, there should exist more such
association schemes and multivariable orthogonal polynomial, far beyond the al-
ready known examples. There are many more candidates for possible multivariable
P-and Q-polynomial association schemes. These theories have just been started,
and I do hope we can develop these study furthermore in this direction.
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Thank You
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Appendix: Bivariate P-polynomial association scheme of type (α, β).

Let 0 ≤ α ≤ 1 and 0 ≤ β < 1. We define the (α, β)-order on the monomials.

xmyn ≤α,β xiyj, if m+ αn ≤ i+ αj and βm+ n ≤ βi+ j.

(We also identify xiyj with (i, j) ∈ N2.)

Definition. Let D ⊂ N2. Let α, β, and ≤α,β be as before. Then the association
scheme X is called a bivariate P-polynomial association scheme of type (α, β) on
the domain D if the following conditions are satisfied.

(i) There exists a relabeling of adjacency matrics:

{A0, A1, ..., Ad} = {Amn | (m,n) ∈ D}

such that for (i, j) ∈ D,
Aij = vij(A10, A01),

where vij(x, y) is (α, β)-compatible bivariate polynomial of degree (i, j). (Namely, a
bivariate polynomial v(x, y) is called (α, β)-compatible, if the monomial xiyj appears
and all other monomials appearing are smaller than xiyj for the order ≤α,β .)

(ii) D is (α, β)-compatible. (Namely, if (i, j) ∈ D and (m,n) ≤α,β (i, j) implies (m,n) ∈
D.)

31


