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Plan of this talk.

(1) The concept of unitary t-design.

(2) The Classification of unitary t-groups
(Bannai-Navarro-Rizo-Tiep).

(3) Explicit constructions of unitary 4-designs in U(4).
(Bannai-Nakahara-Zhao-Zhu).

(4) Explicit constructions of unitary t-designs in U(d) for
any t and any d (Bannai-Nakata-Okuda-Zhao).

(5) Another approach. (Bannai-Okuda-Xiang-Zhao).

(6) Final Remarks.
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The concept of unitary t-designs.

The purpose of design theory is, for a given space M , try to find finite subsets
that approximate the space M well. There are various design theories for various
spaces M. Unitary t-designs are when M = U(d) (the unitary group U(d)).

Definition (unitary t-design). A finite subset X of the unitary group U(d) is called
a unitary t-design, if ∫

U(d)

f(U)dU =
1

|X|
∑
U∈X

f(U).

for any f(U) ∈ Hom(U(d), t, t). (Here we are normalizing |U(d)| = 1.)

Here, Hom(U(d), r, s) = the space of polynomials that are homogeneous of degree
r in the matrix entries of U , and homogeneous of degree s in the complex conjugates
of the matrix entries of U.

This definition is known to be equivalent to the following definition.
Definition. A finite subset X of U(d) is called a unitary t-design if

1

|X|
∑
U∈X

U⊗t ⊗ (U∗)⊗t =

∫
U(d)

U⊗t ⊗ (U∗)⊗tdU,

where dU denotes the unit Haar measure on U(d).
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Another equivalent definition of unitary t-design follows from the following the-

orem.

Theorem. For any finite subset X of U(d),

1

|X|2
∑

U,V ∈X

|tr(U∗V )|2t ≥
∫
U(d)

|tr(U)|2tdU,

with equality if and only if X is a unitary t-design.

Further equivalent definition will be explained later.

History of the study of unitary t-designs.
(The concept was started in physics.)

(1) D. Gross, K. Andenaert and J. Eisert : Evenly distributed unitaries: On the
structure of unitary designs, J. Math. Physics (2007),
(2) A. J. Scott : Optimizing quantum process tomography with unitary 2-designs,
J. Physics A (2008),
(3) A. Roy and A. J. Scott : On unitary designs and codes, Designs, Codes and
Cryptography (2009),
(4) H. Zhu, R. Kueng, M. Grassl and D. Gross : The Clifford group fails gracefully
to be unitary 4-design, arXiv:1609.08172v1.
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What are known on unitary t-designs ?

• Unitary t-designs in U(d) exist for any t and any d (Seymour-Zaslavsky).

• On the other hand, the explicit constructions of them are not easy in general.
(We will come back to this question.)

• We can consider Fisher type lower bound for |X| and tight unitary t-designs.
(But the classification of tight unitary t-designs are still open. We will not discuss
this topic today.)
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Review on Irreducible representations of U(d).

(Cf. Roy-Scott (2009) in most cases below.)

The irreducible representations of U(d) are parametrized by the non-increasing
length-d integer sequences:
µ = (µ1, µ2, . . . , µd) with ∀µi ∈ Z, µ1 ≥ µ2 ≥ . . . ≥ µd.

The degree of the representation µ is given by

dµ =
∏

1≤i<j≤d

µi − µj + j − i

j − i
.

(Note that d(1,0,...,0) = d.)
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• Let V = Cd be the space on which U(d) acts naturally. Then the irreducible
representations of U(d) appearing in V ⊗r ⊗ (V ∗)⊗s are those µ = (µ1, µ2, . . . , µd)
with
|µ| = µ1 + µ2 + · · · + µd = r − s and µ+ ≤ r,
where µ+ =the sum of those positive µi’s.

• dim(Hom(U(d), r, s)) = D(d, r, s)

=
∑

|µ|=r−s, µ+≤r

d2
µ.

D(d, 0, 0) = 1,
D(d, 1, 1) = (d2 − 1)2 + 1 = d4 − 2d2 + 2,
D(d, 2, 2) = 1

4
(d8 − 6d6 + 25d4 − 28d2 + 16),

D(d, 3, 3) = 1
36
(d12 − 12d10 + 103d8 − 378d6 + 778d4 − 600d2 + 252),
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Fisher type inequalities for unitary t-designs.

•X ⊂ U(d) is a 2e-design =⇒ |X| ≥ D(d, e, e)(≈ d4e

(e!)2
).

We call X ⊂ U(d) to be a unitary tight 2e-design, if X is a 2e-design
with |X| = D(d, e, e).

• For odd t = 2e + 1, Fisher type lower bound becomes

|X| ≥ D(d, e + 1, e)(≈ d4e+2

(e+1)!e!
).

Also, a (2e + 1)-design X is called a tight unitary (2e + 1)-design if |X| = D(d, e + 1, e).

(The classification of tight unitary t-designs, as well as how Fisher type inequality
is close to the reality is still open.)
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The classification of Unitary t-groups

• Unitary t-designs in U(d) exist for any t and d.
• But the explicit constructions are difficult in general.

Definition (unitary t-group). If a unitary t-design X in U(d) is itself a group, then
such X is called a unitary t-group in U(d). (We sometimes denote X by G.)

• Let χ be the natural representation U(d) of degree d. It is known that G is
a unitary t-group in U(d), if and only if the decomposition of χ⊗t into the irre-
ducible representations of G is the same as the decomposition into the irreducible
representations of U(d).
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• Also, G is a unitary t-group in U(d), if and only if

1

|G|
∑
g∈G

|tr(g)|2t =
∫
U∈U(d)

|tr(U)|2tdU,

Namely, G ⊂ U(d) is a unitary t-group, if and only if

M2t(G,V ) = M2t(U(d), V ).

where the LHS

M2t(G,V ) = (χt, χt)G =
1

|G|
∑
g∈G

χt(g)χt(g) =
1

|G|
∑
g∈G

|tr(g)|2t,

where χ is the character of the natural representation of U(d).
The RHS is

M2t(U(d), V ) = (χt, χt)U(d) =

∫
U∈U(d)

|tr(U)|2tdU.
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Remarks.

• For d = 2, there are some unitary 5-groups. For example, G = SL(2, 5) of order
120. (On the other hand, there is no unitary 6-group in U(2).)

• In Physics community, it seems that, for some d ≥ 3, some unitary 3-groups
were known (see the list in the next page). But no unitary 4-groups in U(d) were
known for all d ≥ 3.
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The following unitary 3-groups have been known.

• The Clifford group G = Z4 ∗ 21+2m
+ · Sp(2m, 2) is known to be a unitary 3-group

in U(2m), but cannot be a unitary 4-group.

• The following sporadic examples of unitary 3-groups for U(d) (d ≥ 3 ) have been
known.
(i) d = 3, G = 3A6,
(ii) d = 4, G = 6A7, Sp(4, 3),
(iii) d = 6, G = 6L3(4) · 21, 61U4(3),
(iv) d = 12, G = 6Suz,
(v) d = 18, G = 3J3.
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The classification of unitary t-groups.

Bannai-Navarro-Rizo-Tiep[BNRT]: Unitary t-groups, (J. Math. Soc. Japan, 2020),
gave the following answer.

(i) We [BNRT] pointed out that the paper [GT] by Robert M. Guralnick and
Pham Huu Tiep, ”Decompositions of small tensor powers and Larsen’s conjecture”.
Representation Theory, 9 (2005), 138-208.
already gave the non-existence of unitary t-groups in U(d) for t ≥ 4 (at least for
d ≥ 5.) Also, [GT] gives the complete classification of unitary t groups in U(d)
for all t ≥ 2 and all d ≥ 5.

(ii) We [BNRT] gave the complete classification of unitary t-groups (for all t ≥ 2)
for the remaining cases d = 2, 3, 4. The classifications for d = 2, 3, 4 are also very
interesting, as finite unitary reflection groups (complex reflection groups) play very
important roles.

13



13
Explicit Constructions: unitary 4-designs in U(4)

It seems that the explicit constructions of unitary 4-designs in U(4) had not been
made before. We answered this question by
Eiichi Bannai, Mikio Nakahara, Da Zhao, Yan Zhu [BNZZ]. ”On the explicit con-
structions of certain unitary t-designs”, J. Phys. A, 2019.

The rough method is as follows.

Theorem. Let χ be the natural representation of U(d). Suppose that G is a unitary
t-group in U(d), and that

(χt+1, χt+1)G = (χt+1, χt+1)U(d) + 1.

Then there exist a non-trivial (unique up to scalar multiplication)
f ∈ Hom(U(d), t + 1, t + 1)G×G. Let x0 ∈ U(d) be a zero of f. Then the orbit X
of x0 by the action of G × G on U(d) becomes a unitary (t + 1)-design in U(d).
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We [BNZZ] found explicit unitary 4-designs in U(4) coming from the unitary 3-
design G = Sp(4, 3), (with t = 3, d = 4) based on the Theorem mentioned above.
Exactly speaking, we can describe such examples numerically with the errors as
small as we want.

(The size of the smallest unitary 4-designs in U(4) thus constructed is
|Sp(4, 3)|2/6 = 447897600.)
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§6 Explicit Constructions of exact unitary t-designs
in U(d) for any t and d.

Theorem (Bannai-Nakata-Okuda-Zhao, Advances in Math. vol. 405,
2022, Article ID 108457) For each pair of t and d, we can explicitly
construct unitary t-designs in U(d).

Idea of Proof. (1) Induction on d.
(2) We need a new concept of strong unitary t-design in U(d) in order to use the
induction.
(3) For any representation ρ of U(d) (or any compact Lie group G), we say that a
subset X in U(d) is a ρ-design if

1

|X|
∑
U∈X

ρ(U) =

∫
U∈G=U(d)

ρ(U)dU............(⋆)

.
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As we discussed before, irreducible representation of U(n) are parametrized by
non-increasing integer sequences:
λ = (λ1, λ2, ..., λn). As before, let λ+ be the sum of positive λi’s and λ− be the −
of the sum of negative λi’s. We set

Φt,t
n = {λ | λ+ = λ− ≤ t}

and
Ψt,t

n = {λ | λ+ ≤ t, λ− ≤ t}

We define X ⊂ U(n) to be a strong unitary t-design if the equality (⋆) holds for
any irreducible representation ρλ ∈ Ψt,t

n .
Recall that X ⊂ U(n) is a unitary t-design if the equality (⋆) hold for any irre-
ducible representation ρλ ∈ Φt,t

n . So, since Φt,t
n ⊂ Ψt,t

n , a strong unitary t-design is
a unitary t-design.
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Let G = U(n) and K = U(m) × U(n − m). (Then G/K is the Grassmanian space
Gm,n. In particular, if m = 1, then it is the complex projective space.)
(1) We can easily construct strong unitary t-design in U(1).
(2) Let Xm be a strong unitary t-design in U(m) and Xn−m be a strong unitary
t-design in U(n − m). Then

Xm,n−m =

{[
g 0
0 h

] ∣∣∣ g ∈ Xm, h ∈ Xn−m

}
is a ρλ |K-design in K = U(m) × U(n − m). (Namely, ρ-design for any irred. rep.
ρ appearing in ρλ |K .)
(3)Let f1, f2, ..., fℓ be all the zonal spherical functions on G/K and in Ψt,t

n . Let zj

be a zero of fj for each j = 1, 2, . . . , ℓ. Then we can find elements gj ∈ G = U(n)
whose action of gj on G/K is the same as zj.
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(4) Then

X = Xn = Xm,n−m

ℓ∏
j=1

(gjXm,n−m)

becomes a strong unitary t-design in U(d).

Hence this gives explicit constructions of many unitary t-designs in U(d) for any t
and d.

Remark. This idea also gives explicit constructions of
spherical t-designs in Sn−1 by induction on n, by using
O(n) instead of U(n).
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Final Remark. Our theorem was already applied to experimental
physics in quantum information theory. Please see:

Quantum circuits for exact unitary t-designs and applications to
higher-order randomized benchmarking, PRX Quantum 2, 030339
(2021)

Authors: Yoshifumi Nakata, Da Zhao, Takayuki Okuda, Eiichi Bannai, Yasunari
Suzuki, Shiro Tamiya, Kentaro Heya, Zhiguang Yan, Kun Zuo, Shuhei Tamate,
Yutaka Tabuchi, Yasunobu Nakamura.
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Another approach.

Here, we describe another (but similar) approach for the explicit construction
of unitary t-designs in U(n) by induction on n.

Let G be a compact Lie group, and let K be a closed subgroup of G. Let
µG, µK, µG/K be the Haar measures on G,K,G/K respectively with total measure
normalized to be 1. For any representation of G, a finite set X of G is called a
ρ-design, if

1

|X|
∑
x∈X

ρ(x) =

∫
G

ρ(g)dµg.

We use the following result of Okuda first obtained in his Ph.D thesis in 2013.

Theorem (Okuda). Let Y be a ρ-design on G/K, and let Γ be a ρ-design on K.
Fix a map s : Y → G such that π ◦ s = idY . Consider the following set

X(Y, s,Γ) = {s(y)γ | y ∈ Y, γ ∈ Γ} ⊂ G.

Then X(Y, s,Γ) is a ρ-design on G.
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The irreducible representations of U(n) are parametrized by the dominant weight
λ = (λ1, λ2, ..., λn) of non-increasing integers. We denote by λ+ the sum of positive
integers of λ and by λ− the sum of absolute value of negative entries in λ.

Now we define three subsets of the irreducible representations of U(n).

T□(n, t) := {λ = (λ1, λ2, ..., λn) | λ+, λ− ≤ t},

T/(n, t) := {λ = (λ1, λ2, ..., λn) | λ+ = λ− ≤ t},

T△(n, t) := {λ = (λ1, λ2, ..., λn) | λ+ + λ− ≤ t}.

Remark. T/(n, t)-design on U(n) is nothing but the classical unitary t-design
on U(n). The strong unitary t-design (introduced before) is exactly unitary
T□(n, t)-design on U(n). Since T/(n, t),T△(n, t) ⊂ T□(n, t) and
T/(n, t) ⊂ T□(n, t) ⊂ T△(n, 2t), we have the following fact.
(1) Any strong unitary t-design on U(n) is a unitary t-design and a T△(n, t)-
design.
(2) Any T△(n, 2t)-design on U(n) is a unitary t-design and a strong unitary t-
design.

Consider the representation ρΛ =
⊕

ρ∈T△(n,t) ρ of U(n). We want to apply the

previous theorem to the case of G = U(n),K = U(n − 1), and ρ = ρΛ.
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Note that U(n)/U(n − 1) is isomorphic to the complex sphere Ω(n) in n. Now we
want to study the subspace HρΛ

U(n−1) and HρΛ

Ω(n).

The subspace HρΛ

U(n−1) can be determined by the following theorem.

Theorem (see Bump, Theorem 41.1).
Let λ = (λ1, λ2, ..., λn) µ = (µ1, µ2, ..., µn−1). Then the restriction of ρλ to U(n − 1)
contains a copy of ρµ if and only if λ and µ interlace. The restriction of ρλ is
multiplicity-free. Moreover, if λ and µ interlace, then we have µ+ + µ− ≤ λ+ + λ−.
Therefore, supp ρΛ|U(n−1) = T△(n − 1, t). Hence we determine the subspace HρΛ

U(n−1).

HρΛ

U(n−1) = HT△(n−1,t)

U(n−1) .

Next, we determine the subspace HρΛ

Ω(n).

Definition. For a fixed dimension n and non-negative integers p and q, Hn(p, q) is
the vector space of all harmonic homogeneous polynomials om Cn that have total
degree p in the variables z1, z2, ..., zn and total degree q in the variables z̄1, z̄2, ..., z̄n.
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It is known that these Hn(p, q) are minimal unitary invariant spaces on Ω(n).
Note that X is a T△(n, t)-design on U(n) if and only if

1

|X|
∑
U∈X

U⊗r ⊗ (U †)⊗s =

∫
G

U⊗r ⊗ (U †)⊗sdµ(U)

holds for every nonnegative integers r and s suchthat r + s ≤ t. Take gK = UzK,
where Uz is a unitary matrix with last column z ∈ Ω(n) andK = ⟨[M, 0; 0, 1],M ∈ U(n − 1)⟩.
Observe that the functions appearing in HρΛ

U(n)/U(n−1) are in ⊗p+q≤tHn(p, q).

Recall that X is a complex spherical t-design on Ω(n) if and only if

1

|X|
∑
z∈X

f(z) =

∫
Ω(n)

f(z)dµ(z)

holds for every f ∈ ⊗p+q≤tH(p, q).
Now, HρΛ

U(n−1) and HρΛ

Ω(n) are determined, we are ready to apply the previous

theorem with G = U(n),K = U(n − 1), and ρ|ρΛ.
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Corollary. Let Y be a complex spherical t-design on Ω(n) ∼= U(n)/U(n − 1),
and let Γ be a T△(n − 1, t)-design on U(n − 1). Fix map s : Y → U(n) such that
π ◦ s = idY . Consider the following set

X(Y, s,Γ);= {s(y)γ | y ∈ Y, γ ∈ Γ} ⊂ U(n).

Then X(Y, s,Γ) is a T△(n, t)-design on U(n).
By induction construction, we obtain the following Corollary.

Corollary. Let Y1, Y2, ..., Yn be complex spherical 2t-designs on Ω(1),Ω(2), , ...,Ω(n)
respectively. Then we can construct a T△(n, 2t)-design on U(n) inductively via the
previous Corollary. In particular, it is a (strong) unitary t-design on U(n).

Finally, we reduce complex spherical designs to real spherical designs.
Consider the following map ϕ : Cd → R2d :

ϕ(z1, z2, ..., zd) = (Re(z1), Im(z1), Re(z2), Im(z2), ..., Re(zd), Im(zd)).

Note that ϕ maps points in the complex unit sphere Ω(d) to points in the real unit
sphere S2d−1.

Theorem. Let t, d be positive integers. Let t, d be positive integers. Let X be a
subset of the complex sphere Ω(d). Then the followings are equivalent.
(1) The set X is a complex spherical t-design on Ω(d).
(2) The set ϕ(X) is a real spherical t-design on S2d−1.
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Corollary. Let Y1, Y2, ..., Yn be real spherical 2t-design on S1, S3, ..., S2n−1 respec-
tively. Then we can construct a T△(n, 2t)-design on U(n) respectively via The
previous Corollary and the above Theorem just mentioned. In particular, it is a
(strong) unitary t-design on U(n).
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Thank You
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