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Spherical designs of harmonic index T

In this section, we consider another generalizations of spherical t-designs. (Later
we will consider also for designs on association schemes.)

Definition (Spherical designs of harmonic index T ) Let T be a subset of {1, 2, . . .}.
Let Y be a finite non-empty subset of Sn−1. Then Y is called a spherical design of
harmonic index T (or spherical T -design), if∑

x∈Y

f(x) = 0 for all f ∈ Harmk(Rn), k ∈ T .

The case T = {1, 2, . . . , t} corresponds the usual spherical t-designs on Sn−1. The
case T = {t} is called a spherical design of harmonic index t.

Let Qn,k(x) be the Gegenbauer polynomial of degree k defined before. Then we
have

Qn,k(1) = dim
(
Harmk(Rn)

)
=

(
n − 1 + k

k

)
−

(
n − 1 + k − 2

k − 2

)
.

Bannai-Okuda-Tagami (2015) gave the Fisher type inequality for spherical designs

of harmonic index 2e as follows.
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Theorem. Let Y be a spherical design of harmonic index 2e. Then

|Y | ≥ 1 +
Qn,2e(1)

cn,2e

:= bn,2e,

where
cn,2e = −min−1≤x≤1Qn,2e(x). (∗)

Equality holds if and only if Qn,2e(α) = −cn,2e for any α ∈ A(Y ), where

A(X) = {x · y | x, y ∈ Y, x ̸= y}.

We say Y is tight if the equality hold in the above formula (*).

More generally, Zhu-Bannai-Bannai-Kim-Yu (Electron. J. Comb. 2017) dealt
with the case when T consists of ℓ positive even integers t1 > t2 > · · · > tℓ ≥ 2.
They considered a test function

F (x) = f0 +
∑
k∈T

fkQn,k(x)

with the normalization ft1 = 1 so that the following condition is satisfied:

F (x) is non-negative and has ℓ non-negative zeros on [−1, 1].
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Theorem. Let Y be a spherical design of harmonic index T = {t1 > t2 > · · · > tℓ}.
Then we have

|Y | ≥
F (1)

f0

.

If there is such a function F (x), a lower bound for |Y | is obtained. However, it
is generally open what is the best (optimal) F (x). Even in the case of usual tight
spherical 2e-designs, this is not easy (i.e., not yet answered). So, I believe the
definition of tight spherical t-design is a kind of conventional nature. Nonetheless,
I believe that the usual definition of tight spherical t-design is natural and mean-
ingful. (So, it is in general not easy to define the concept of tight T -design for
general T , in particular when ℓ is large. (Still we consider natural lower bound for
some reasonable T , and studying the case where the lower bound is attained (tight
T -designs) even we know that this definition of tight T -design is conventional. (See
Zhu-Bannai-Bannai-Kim-Yu(2017).)

Anyway, we studied tight spherical harmonic index 2e-designs. In Okuda-Yu
((2016) these tight spherical designs of harmonic index 4 are completely classified,
and further studies were made in Bannai-Okuda-Tagami (2015). One interesting
result there is that for each e there is a constant ce such that if there is a harmonic
index 2e-design Y on Sn−1. Then |Y | ≥ cen

e if n goes to ∞. This implies that the
size of a harmonic index 2e-design is basically the same order as the Fisher type
lower bound of usual spherical 2e-designs.

4



4
Harmonic index t-design in H(n, 2).

We can consider T -design where T is a subset of {1, 2, ..., d} (the set of indices
of the primitive idempotents) in H(n, 2), or more generally in any commutative
association scheme X = (X, {Ri}0≤i≤d).

Definition. Let X = (X, {Ri}0≤i≤d) be a commutative association scheme. If a
subset Y of X satisfies the condition that EiϕY = 0 for any i ∈ T , then Y is
called a T -design in X. (Note that the condition EiϕY = 0 is equivalent to the
condition that a∗

1 = a∗
2 = · · · = a∗

t = 0 for the dual distribution of Y . Also, note
that if T = {1, 2, . . . , t} then a design of harmonic index T is a usual t-design in
X. If T = {t}, then it is called a harmonic index t-design.)

We have similar result as in spherical designs of harmonic index t. Namely, in
H(n, 2) for each e there is a constant ce such that if there is a harmonic index
2e-design Y on Sn−1, Then |Y | ≥ cen

e if n goes to ∞. Also, the concept of tight
t-designs of harmonic index T is defined (for some T but not for all T ), and the
existence of tight designs of harmonic index T was studied for some T .
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Recall that we have already considered the following generalizations of spherical

t-designs and t-design in a Q-polynomial association scheme.
(i) Two step generalization to Euclidean t-design on p concentric spheres (for the
case of spherical t-designs, see Lecture 4) and two step generalization to relative t-
designs on p shells of the Q-polynomial association scheme (for the case of t-design
on Q-polynomial association schemes, see Lecture 5).

As we just discussed there was the following generalization
(ii) Consider T -design instead of t-design, i.e., harmonic index T -design. (We
were interested in Fisher type lower bound as well as the classification of tight
T -designs.)

Another generalization is
(iii) To change the basic space, namely instead of sphere Sn−1 we consider other
spaces. Most natural ones are replace the sphere by various topological spaces M ,
in particular rank one compact symmetric spaces, or furthermore compact sym-
metric spaces of any rank. (Or more generally compact Gelfand pairs coming from
Lie groups.) While, instead of Q-polynomial association scheme, we consider more
general commutative association schemes, or more specifically so called Gelfand
pairs (multiplicity free finite permutation groups).

So, I believe that our tentative final target is try to classify basic spaces, i.e.,
Gelfand pairs and commutative association schemes.) Now, we want to discuss on
this problem. (Neither technically nor rigorously, but in a way like waving hands.)
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The following part is based on my talk at at Wokshop on Algebraic Combina-

torics, at Academia Sinica, Taipei, Jan. 26, 2022.

(Abstract). The classification problem of P-and Q-polynomial association schemes
has been (and still is) a central problem in algebraic combinatorics, since around
1980. Beyond that, we have been interested in studying more general commutative
association schemes and finite Gelfand pairs, along the line of study of P-and Q-
polynomial association schemes.

See for example, E. Bannai: Character tables of commutative association schemes,
in Finite Geometries, Buildings, and Related Topics (ed. by W. M. Kantor et al.),
Oxford Univ. Press, 1990, 105-128.

In this talk, I will try to present what I know and also what I want to know on
commutative association schemes and finite Gelfand pairs. Sorry that this part of
my lecture is only from my very personal view, and may be too personal.
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Conceptually, it seems that there are close connections between the concept of

compact symmetric spaces of rank one and the concept of
P-and Q-polynomial association schemes. This was an important motivation why I
wanted to study P-and Q-polynomial association schemes in the first place.

Please recall D. Leonard’s theorem (1982) and the book Bannai-Ito: Algebraic
Combinatorics, I (Benjamin/Cummings,1984).
This semester (in fall 2021), I gave a course of Taiwan Mathematical School at
NTU. In the first half, I lectured on Chapter 6 of new book of Bannai-Bannai-
Ito-Tanaka: Algebraic Combinatorics (De Gruyter, 2021). Chapter 6 treats P-and
Q-polynomial association schemes and the classification of Leonard pairs. In the
second half of the course, I lectured on the character tables of many examples of
finite Gelfand pairs (G,H) (multiplicity-free transitive permutation groups) and
commutative association schemes, emphasizing the finite group theoretical view-
point.

Then I began to realize that some of my understandings were not precise enough
and that the relation between general Gelfand pairs (G,H) in Lie groups and
Gelfand pairs (G,H) in finite groups is very delicate and not so simple as I originally
imagined. So, I want to present some of my new understandings, together with
my reflections.
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First, let us recall that compact symmetric spaces were classified by E. Cartan

(1926). Compact symmetric spaces are Gelfand pairs. There is a weaker concept
called ”weakly symmetric spaces” defined by Selberg (1956) and are also shown to
be Gelfand pairs. Also, weakly symmetric spaces are classified (Akhiezer-Vinberg,
1999; Nguyen, 2000). On the other hand, (under some mild additional conditions
such as compact, connected, G being a simple Lie group), it is shown that compact
Gelfand pairs were already classified (cf. Krämer, 1979). So, we basically have the
list of compact Gelfand pairs (for Lie groups). I was not aware of this fact before.
The list (essentially the same list as the compact symmetric or weakly symmetric
spaces) is very interesting.
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Question. For each symmetric space, or weakly symmetric space, or
Gelfand pair (G,H), is there any corresponding finite Gelfand pair
(G′,H ′) ?

In many cases yes, in the sense that we can find some candidates. On the other
hand, it is not always easy to see that when H ′ actually becomes a multiplicity-free
subgroup of G′. (There are many things left undecided.)

The maximal subgroups of finite simple groups are now classified to some extent.
(This classification is not complete even if we restrict to multiplicity-free maximal
subgroups.)
• For alternating groups, by Saxl and others,
• For classical groups, by Aschbacher and many others,
• For exceptional Lie type groups, by Cooperstein, Kleidman, Craven (arXiv;2103.04869v2)
and others,
• For sporadic simple groups, by Ivanov and others.
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Here are some examples of Gelfand pairs (G,H) for finite classical groups. After

pioneering work by Gow(1984) and Inglis-Liebeck-Saxl (1986), Inglis in his Ph. D
thesis (1986) gives all the candidates of maximal subgroups which are multiplicity-
free for finite classical Lie type groups. For example, for type (A), the follow are
the examples.
G = GL(n, q2),H = GL(n, q),
G = GL(n, q2),H = GU(n, q2),
G = GL(2n, q),H = Sp(2n, q),
G = GL(2n, q),H = GL(n, q2).

Also, similar results were basically obtained for other classical Lie type groups.

For example, it is seen that (Sp(4, q), Sz(q)) (for q being an odd power of 2) is a
Gelfand pair, but (Sp(4, q2), Sp(4, q)) is not a Gelfand pair but almost multiplicity-
free. Namely, there is exactly one irreducible character appearing with multiplicity
2 in (1H)G, and other irreducible representations are all multiplicity at most 1.
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There are four main sources to get finite Gelfand pairs and commutative asso-

ciation schemes.

(i) G is a group (of Lie type) acting irreducibly on a vector space V (over a
finite field Fq). Let V0 be a subspace of V , and let H be the stabilizer of V0 in G.
Then consider the action of G on X = G/H.

(ii) G is a group (of Lie type) acting irreducibly on a vector space V (over a
finite field Fq). Let H be also an irreducible subgroup of G. Then consider the
action of G on X = G/H.

(iii) Let G be a group, and let G × G acts on the diagonal subgroup diag(G).
Namely, we consider the group association scheme X (G) of G. Then we get a
Gelfand pair (G × G, diag(G)). Note that there is a well-known correspondences
between the character table T of the group G and the first eigenmatrix (character
table) P of the group association scheme X (G).

(iv) Let H be a subgroup of GL(V ) and let G = V.H (semi-direct product) acts
on the coset V = G/H. (This is always a Gelfand pair.)
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I think it is still true that these four cases are the important sources to get finite

Gelfand pairs and commutative association schemes.

In a series of papers joint with Sung-Yell Song, Hao Shen, Hongzeng Wei,
Wing Man Kwok, Noriaki Kawanaka, Hajime Tanaka, Hiromichi Yamada, and
others, I studied the theme that many character tables of commutative association
schemes are controlled by the character table of smaller association schemes. This
was started with the work on the character tables of simple Moufang loops of Paige
with Song (Proc. LMS,1988), and then progressed very successfully. For the char-
acter table of the action of a Chevalley group on the isotropic subspaces (namely
the cosets by a parabolic subgroup), it was earlier known to be controlled by the
character table of the action of the Weyl group on its cosets by a Weyl subgroup
corresponding to the parabolic subgroup (Curtis-Iwahori-Kilomyer, 1970, etc.).
We studied the action on non-isotropic subspaces for small dimensions (Bannai-
Song-Shen-Wei, 1990, etc.) as well as the cases GL(2n, q)/Sp(2n, q) (Bannai-
Kawanaka-Song, 1990), GL(2n, q)/GL(n, q2) (Bannai-Tanaka, 2003), G2(q)/O

ϵ
6(q)

(Bannai-Song-Yamada, 2008), and so on.
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Now, I would like to reflect on these work.

(1) We have not yet completely determined when a subgroup H which fixes
a non-isotropic subspace is multiplicity-free. (We considered the cases where the
dimension of the non-isotropic subspace is of dimension 1 (orthogonal and unitary
cases) and dimension 2 (symplectic case) and assumed that other cases are probably
not multiplicity-free. I hope that answering to this remaining question is possible.
Even if most of them are not exactly multiplicity-free, the multiplicity of irreducible
characters appearing in the permutation character seems to be bounded. So, there
are some cases where the situation is very close to the multiplicity-free case, even
if it is not exactly multiplicity-free. I now believe that we better study the cases
that are close to multiplicity-free.

(2) Another reflection is that we wanted to approach the classification problem of
finite Gelfand pairs, based on the analogy of the classification of compact symmetric
spaces, or compact Gelfand pairs. As the first approximation, it looked promising.
However, the details are far more complicated than I originally thought.
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The most natural (compact) symmetric spaces coming from classical Lie groups
are:

G = SU(n + m),H = S(U(n) × U(m))
(G = SU(n + m),H = SU(n) × SU(m) is a weakly symmetric space.)

G = SO(n + m),H = SO(n) × SO(m),
G = Sp(n + m),H = Sp(n) × Sp(m).

It is known that for each finite classical simple group, there is a good maximal
parabolic subgroup that gives a P-and Q-polynomial structure. However, this does
not correspond to the above compact Gelfand pair (G,H). For each above (G,H)
there is a natural (G′,H ′) that can naturally be expected to give a finite Gelfand
pair. But, actually, that subgroup H ′ is the stabilizer of a non-isotropic subspace,
and far different from the parabolic subgroup that gives a P-and Q-polynomial
structure. (Also, more importantly, this does not give a Gelfand pair in general,
in particular if n is not very small and n ≤ m, as I mentioned already.)

I originally thought naively that there should be a good multivariable version
of Askey-Wilson polynomials, and many of the character tables of finite Gelfand
pairs as well as commutative association schemes should be described by using
them. Also, I thought that P-and Q-polynomial association schemes of rank ℓ may
be naturally defined. However, this was no so simple at all, although there are
some multivariable versions of Askey-Wilson polynomials are known. So, here are
some of my deep reflections.
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(a) There are not so many examples that can be considered as a P-and Q-polynomial
association schemes of rank 2 (or higher arbitrary rank ℓ), both in compact sym-
metric space case and in finite case. (This was at the point in my talk at that
time, January 2022.) As mentioned in the previous page of the slides, if n ≤ m
and n ≥ 2 then the natural corresponding finite case seems not to be even Gelfand
pair at all, although the multiplicities are bounded by small number (in other
words, near multiplicity-free). Some of compact symmetric space case, such as
G = SU(n),H = SO(n), give a finite Gelfand pair, sayG = GL(n, q2),H = GL(n, q),
but this Gelfand is far from P-and Q-polynomial schemes. It is difficult to inter-
pret this as higher rank P-and Q-polynomial scheme in some reasonable way, so
far. It would be very desirable, if we could regard the group association scheme
X(GL(n, q)) or X(GU(n, q)) (that is a controlling association scheme of the finite
Gelfand pair (GL(n, q2), GL(n, q)) as a P-and Q-polynomial association scheme of
higher rank, say n − 1(or n?), but perhaps it is not so easy. Also, it would be
desirable, if (GL(2n, q), GL(n, q2)) could be regarded as a P-and Q-polynomial as-
sociation scheme of rank [n

2
]. (Also, it would be interesting, if (Sp(2n, q), GL(n, q))

or (Sp(2n, q), GU(n, q)) could be regarded as a P-and Q-polynomial association
scheme of rank n.)
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(b) It seems that the only known good examples of P-and Q-polynomial association
schemes of rank 2 (or higher arbitrary rank ℓ.) are basically those obtained as
wreath product (G wr Sn)/(H wr Sn) found by Mizukawa (2004) and Mizukawa-
Tanaka (2004), where (G,H) is a Gelfand pair. Note that several multivariable
versions of Askey-Wilson polynomials are already known and some of them are
interpreted as the spherical functions of quantum groups (say), but not necessarily
of commutative association schemes.

(c) In their paper: Iliev-Terwilliger (2012), they interpret these multivariable ver-
sion of Askey-Wilson polynomials in a very visual way as higher rank Leonard sys-
tems. I am very much fascinated with the Problem 7.1 proposed in Iliev-Terwillige
(2012). They regard their polynomials related to the root system of type An and
ask whether there are multivariable polynomials corresponding to other simple
root systems. On the other hand, I am not certain whether there are any examples
of Gelfand pair (or commutative association schemes) associated to these multi-
variable orthogonal polynomials corresponding to other root systems (although I
wish they could exist).
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Then, how should we proceed ?

I have no definite answer. But, I would like to study the structure of the Bose-
Mesner algebra of controlling (small) association schemes carefully. In particular,
those controlling (small) association schemes that appear in our series of papers
(mentioned at the beginning of my talk), such as

X(PGL(2, q)),X(PSL(2, q)), PGL(2, q)/D2(q−1), PGL(2, q)/D2(q+1),
PGL(2, q)/Zq+1, PGL(2, q)/Zq−1, O(3, q)/O+(2, q), etc. etc.

I believe that more mechanisms are hidden there.

Conclusions. (i) More group theoretical study should be given on the classi-
fication of finite Gelfand pairs. Personally, I was interested in studying Gelfand
pairs (commutative association schemes) mostly avoiding to use the classification
of finite simple groups. Note that there are many papers that study the structures
of maximal subgroups using the classification of finite simple groups, by O’Nan,
Scott, Cameron, Praeger, Liebeck, Saxl, Seitz, Aschbacher, Ivanov, and many many
others. Still many materials are left open, even on the classification of maximal
subgroups, or more specifically the classification of the multiplicity-free maximal
subgroups (Gelfand pairs), as well as the determination of their character tables
(spherical functions). I think there are some advantages and some disadvantages in
trying to avoid the classification of finite simple groups. I do not have any serious
regret on this attitude of mine. (The life is limited, and so we have to choose
what we can do.) However, I think I could have learned more on group theoretical
results and techniques that use the classification of finite simple groups.
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I just become aware that there are many studies that apply O’Nan-Scott the-
orem (on the structure of maximal subgroups) to various special cases: to the
classifications of doubly transitive groups, rank 3 permutation groups (Liebeck),
distance-transitive graphs (Praeger-Saxl-Yokoyama), multiplicity-free subgroups,
namely Gelfand pairs (Baddeley, J. Algebra, 1993), etc. etc.. I think we should
now look at many explicit examples of Gelfand pairs from this viewpoint of group
theory.

(ii) I still believe in what I have been working on algebraic combinatorics. I still
believe that the classification problem of P-and Q-polynomial association schemes
is very important, in a sense as the classification of finite simple groups is obviously
and extremely important. Also, the classification problem of general (primitive)
commutative association schemes are naturally very important, although it may
not be intractable. I think even the special case: the classification of maximal
subgroups that are multiplicity-free (so, primitive Gelfand pairs) is important, even
it depends on the classification of finite simple groups. At the same time, I feel it
is very pity that I (as well as most of us) cannot understand the full details of the
proof of the classification of finite simple groups. Now, there are many many proofs
(in mathematics general) that we cannot understand the details, partly because
the techniques are so complicated, and also extensive computer calculations and/or
AI are involved. Even so, I hope mathematics can be survived in the future.
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To be continued.
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