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The concept of Euclideans t-designs

Now, we want to define Euclidean t-designs, as a two step generalization of spherical
t-designs.

Today, we restrict our discussion to generalizations of spherical t-designs. We will
not discuss generalizations of combinatorial designs here, although a similar theory
has already been developed for the combinatorial t-designs.

First step generalization (weighted spherical t-design, or cubature
formula on the sphere).

• Let X ⊂ Sn−1, and let w : X −→ R>0. Then the pair (X,w) is called a weighted
spherical t-design, if

1

|Sn−1|

∫
Sn−1

f(x)dσ(x) =
∑
x∈X

w(x)f(x),

for any polynomial f(x) = f(x1, x2, . . . , xn) of degree at most t.
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The second step generalization (allow several concentric spheres).

• A weighted subset (X,w) on a union
S = Sn−1

1 (r1) ∪ Sn−1
2 (r2) ∪ · · · ∪ Sn−1

p (rp)
of p concentric spheres is called a Euclidean t-design on S if

p∑
i=1

W (Xi)

|Sn−1
i (ri)|

∫
S

n−1
i (ri)

f(x)dσi(x) =
∑
x∈X

w(x)f(x)

holds for any polynomial f(x) = f(x1, x2, . . . , xn) of degree at most t.
Here, Xi = X ∩ Sn−1

i (ri) and W (Xi) =
∑

x∈Xi
w(x) for 1 ≤ i ≤ p.

So, we have the following definition of Euclidean t-designs (on a union of p
concentric spheres).

Definition. (Neumaier-Seidel, 1988). (X,w) is a Euclidean t-design if

p∑
i=1

W (Xi)

|Sn−1
i (ri)|

∫
S

n−1
i (ri)

f(x)dσi(x) =
∑
x∈X

w(x)f(x)

for any polynomial f(x) of degree at most t,

where Xi = X ∩ Sn−1
i (ri) and W (Xi) =

∑
x∈Xi

w(x).
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The definition of Euclidean t-design was first introduced by Neumaier-Seidel in
1988. There were similar concepts in statistics as rotatable designs and also in
numerical analysis as cubature formulas on radially symmetric measures.

I am personally indebted to J. J. Seidel, as he wanted me to study tight Eu-
clidean t-designs. Jointly with Etsuko Bannai, we started a systematic study
of tight Euclidean t-designs, in particular in [BB, On Euclidean tight 4-designs,
JMSJ](2006).

Now, we will give a survey of the study of Euclidean t-designs.
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General Theory of Euclidean designs

Let Pe(Rn) be the space of polynomials of degree at most e on Rn. Pe(S
n−1) is the

space obtained by restricting it to the set S = Sn−1(r1) ∪ Sn−1(r2) ∪ · · · ∪ Sn−1(rp).
Let X be a finite set on S. (Here we assume that the ri are all distinct and positive
for simplicity.) Then

dimPe(S) =

2p−1∑
i=0

(
n − 1 + e − i

e − i

)
.

Note that |X| ≥ dimPe(S) for Euclidean t(= 2e) design on p concentric spheres.

Let P∗
e (R

n) be the subspace of Pe(Rn) all of their terms have the same parity
as e. Then

dimP∗
e (S) =

p−1∑
i=0

(
n − 1 + e − 2i

e − 2i

)
.

Note that |X| ≥ 2 dimP∗
e (S) for Euclidean t(= 2e + 1) design on p concentric

spheres.

We call X to be a tight Euclidean t-design on a union S of p concentric spheres, if
|X| = dimPe(S) for t = 2e; and |X| = 2dimP∗

e (S) for t = 2e + 1.
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The following conditions are equivalent (Neumaier-Seidel(1988))

(1) X is a Euclidean t-design with weight function w.

(2)
∑

x∈X w(x)f(x) = 0, for any polynomial f ∈ ∥x∥2jHarmℓ(Rn) with 1 ≤ ℓ ≤ t

and 0 ≤ j ≤ [ t−ℓ
2
].

The condition (2) is furthermore modified in a form suitable for further applica-
tions. I will not write down these modified forms, as it is very complicated. We
may call them ”Fundamental Equations”.(See (2.3) and (2.4) in [BB, On Euclidean
tight 4-designs, JMSJ (2006)] for t = 2e and see (3.1) and (3.2) in [Etsuko B, On
antipodal Euclidean tight (2e + 1)-designs, (2009)] for t = 2e + 1.

From these ”Fundamental Equations”, we can obtain the following facts.
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Theorem.
(i) Let (X,w) be a tight Euclidean t-design on p concentric spheres. Then the
weight function w(x) is constant on each Xi.
(ii) Let (X,w) be a tight Euclidean t-designs on 2 concentric spheres (namely,
p = 2). Then X has the structure of a coherent configuration, with respect to the
inner products as relations.

Moreover, if t = 2e, then this coherent configuration is of type

[
e e

e + 1

]
or[

e + 1 e
e + 1

]
; and if t = 2e + 1 then it is of type

[
e + 1 e

e + 2

]
or

[
e + 2 e

e + 2

]
.

(Notation will be explained in the next page.)
(iii) Moreover, if p = 2, then X1 and X2 are spherical (t − 2)-designs on S1 and
S2, respectively.

It is also known (by Möller) that if (X,w) is a Euclidean tight t = (2e + 1)-design
(and for any p), then X is antipodal. (Namely, x ∈ X implies −x ∈ X.)
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Coherent configurations.

Here we should note that the coherent configuration is a purely combinatorial
object generalizing the association scheme. Namely (X, {Ri}(i ∈ I)), a pair of a
finite set X and a set of relations Ri(i ∈ I) on X, is called a coherent configuration,
if the following conditions (1) to (4) are satisfied:

(1) {Ri(i ∈ I)} gives a partition of X × X.
(2) There is a subset S ⊂ I, such that {(x, x) | x ∈ X} =

∪
i∈S Ri,

(3) For each i ∈ I, there exist i′ ∈ I such that tRi = Ri′ where
tRi = {(y, x) | (x, y) ∈ Ri}.
(4) For any fixed i, j, k ∈ I, the number
|{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| = pk

i,j is constant whenever (x, y) ∈ Rk holds.

Note that the association scheme is the special case of the coherent configura-
tion with |S| = 1. Also note that, just like the association schemes are useful for
the study of spherical designs, coherent configurations are useful for the study of
Euclidean designs.

The type of the coherent configuration is the |S| × |S|-matrix whose (i, j)-entry
is the number of relations Rk in Xi × Xj , where
Xi = {x ∈ X | (x, x) ∈ Ri}, for i ∈ S.
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Tight Euclidean 2-and 3-designs.

Tight Euclidean 2-designs are characterized as one inner product sets with negative
inner product value, although the one inner product sets are not yet completely
understood. (See [B-B-Suprijanto, 2010].) On the other hand, tight Euclidean
3-designs are completely determined. See [Etsuko B, On antipodal Euclidean tight
(2e + 1)-designs (2009)]. Namely, up to an orthogonal transformation, we have
X = X1 ∪ X2 ∪ · · · ∪ Xp with

Xi = {±riej | 1 +

i−1∑
ℓ=1

Nℓ ≤ j ≤
i∑

ℓ=1

Nℓ}.

Here, {e1, . . . , en} is an orthonormal basis of Rn, 2Ni = |Xi| and
w(x) = 1

nr2
i
for x ∈ Xi and for i = 1, 2, . . . , p.

So, tight Euclidean t-designs with t = 2 and 3 were classified for any p. However,
it is not so easy to try to do the classification for t ≥ 4, for general p.
So, we will try to classify those, first for p = 2.
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Review of the classification of tight Euclidean
t-designs on two concentric spheres.

First, we remark that tight Euclidean t-design in R2 are classified by Bajnok [Ba-
jnok, 2006], under the assumption that p ≤ [ t

4
] + 1. See [Bajnok, On Euclidean de-

signs, Advances in Geometry, 2006], (Cf. also [B-B-Hirao-Sawa, Cubature formulas
in numerical analysis and Euclidean tight designs, Europ. J. Comb. 2010].) (Also
in the area of numerical analysis: these examples were considered by Verlinden-
Cools (1992), Cools-Schmid (1993).)
(The classification of tight Euclidean t-design in R2 is still wide open for bigger p.)

There is a work of Etsuko Bannai that gives the complete parameters of tight
Euclidean 5 designs of R2. (There are plenty of freedoms on the parameters.)

Etsuko Bannai: Classification of tight Euclidean 5-designs in R2, RIMS Proceedings
No. 2253, 2023.
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Tight Euclidean t-designs for t = 2e + 1 and p = 2.

Tight Euclidean t-designs on two concentric spheres (namely with p = 2) was
completely solved for t = 5, 7 and 9, in the following papers, respectively.
(1) Etsuko Bannai: On antipodal Euclidean tight (2e + 1)-designs, J. Alg. Comb.,
2006], for t = 5.
(2) Bannai-Bannai [Beijing, Higher Edu. Press, 2009], for t = 7.
(3) Bannai-Bannai [JMSJ, 2010] for t = 9.

Moreover, it is proved that

(4) For each fixed t ≥ 13 (odd), there are only finitely many n for which there
exists a tight Euclidean t-design in Rn with p = 2.
Bannai-Bannai [Moscow J. Comb. Number Theory, 2014].

The finiteness of n for t = 11, is not yet obtains, although there are no nontrivial
example known to exist.
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Tight Euclidean 5-designs for p = 2 was classified by [Etsuko B, On antipodal
Euclidean tight (2e + 1)- designs, J. Alg. Comb., 2006]:

Theorem. Let X be an (antipodal) tight Euclidean 5-design in Rn supported by 2
concentrated spheres. Then X is similar to one of the following: Here, X1 is on
the unit sphere and X2 is on the sphere of radius r ̸= 1.

• n = 2, X = X1 ∪ X2, X1 = {(±1, 0), (0,±1)}, X2 = {(± r√
2
,± r√

2
)}, r ̸= 1,

w(x) = 1 for x ∈ X1, w(x) = 1
r4 for x ∈ X2.

• n = 3, X1 = {±ei | i = 1, 2, 3}, X2 = { r√
3
(ε1, ε2, ε3) | εi ∈ {1,−1}, i = 1, 2, 3},

r ̸= 1, w(x) = 1 for x ∈ X1, w(x) = 9
8r4 for x ∈ X2.

• n = 5, X = X1 ∪ X2 ⊂ V = {(x1, x2, . . . , x6) ∈ R6 |
∑6

i=1 xi = 0} ∼= R5,

X1 = {±ui | 1 ≤ i ≤ 6}, X2 =
{

r√
6
(ε1, ε2, . . . , ε6) | εi ∈ {1, −1}, |{i | εi = 1}| = 3

}
,

r ̸= 1 where ui = (ui,1, ui,2, . . . , ui,6) ∈ V , 1 ≤ i ≤ 6, ui,i = − 5√
30
, ui,j = 1√

30

for j ̸= i, 1 ≤ j ≤ 6. w(x) = 1 for x ∈ X1, w(x) = 27
25r4 for x ∈ X2.

• n = 6, X1 = {±ei | 1 ≤ i ≤ 6}, where {e1, e2, . . . , e6} is the canonical basis

of R6. X2 =

{
r√
6
(ε1, ε2, . . . , ε6)

∣∣∣ εi ∈ {1, −1},
|{i | εi = 1}| ≡ 0 (mod 2)

}
, where r ̸= 1,

w(x) = 1 for x ∈ X1, w(x) = 9
8r4 for x ∈ X2.
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The following result is in [BB, “Spherical designs and Euclidean designs” Higher
Education Press (2009)].

Theorem A Euclidean tight 7-design (X,w) supported by a union of two concentric
spheres in Rn (0 ̸∈ X) is similar to one of the following: X1 is on the unit sphere
and X2 is on the sphere of radius r ̸= 1.

• n = 2: |X| = 12, |X1| = 6, |X2| = 6, w(x) = 1, for x ∈ X1, w(x) = 1
r6 for

x ∈ X2, X1 and X2 are 3-distance sets. X1 and X2 are spherical tight 5-
designs.

• n = 4: |X| = 48, |X1| = |X2| = 24, w(x) = 1 for x ∈ X1, w(x) = 1
r6 for x ∈ X2,

r ̸= 1. X1 and X2 are 4-distance sets.

• n = 7: |X| = 182, |X1| = 56, |X2| = 126, w(x) = 1 for x ∈ X1, w(x) = 32
27

1
r6

for x ∈ X2, r ≠ 1. X1 is a spherical tight 5-design which is a 3-distance set,
X2 is a 4-distance set.

Theorem [BB, JMSJ, 2009]: Let (X,w) be a Euclidean tight 9-design supported
by a union of two concentric spheres in Rn (0 ̸∈ X). Then we must have n = 2
and |X1| = |X2| = 8. X1 and X2 are regular 8-gons. w(x) = 1 for x ∈ X1 and
w(x) = 1

r8 (r ̸= 1) for x ∈ X2
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Tight Euclidean t-designs for t = 2e and p = 2

One example of tight Euclidean 6-design with p = 2 (n = 22, |X1| = 275,
|X2| = 2025) was found by B-B-Shigezumi, A new tight Euclidean 6-design Ann.
Comb. (2012). Besides this work, tight Euclidean t = 2e designs have not been
much studied, in particular for e ≥ 3. So, here we mostly consider

Tight Euclidean 4-designs with p = 2

Let (X,w) be a tight Euclidean 4-design on two concentric spheres S = Sn−1(r1) ∪ Sn−1(r2).

Then |X| = (n+2)(n+1)

2
.

It was shown that X has the structure of coherent configuration

[
2 2

3

]
or

[
3 2

3

]
.

Moreover we get the following assertions:
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(i) X1 and X2 are spherical 2-designs on Sn−1(r1) and Sn−1(r2) respectively.

(ii) w is constant on each Xi (i = 1, 2).

(iii) Without loss of generality, we may assume that

w(x) ≡ w1 = 1 for x ∈ X1, and w(x) ≡ w2 for x ∈ X2,

and r1 = 1, r2 = r(̸= 1)

(iv) Type

[
2 2

3

]
coherent configuration means X1 is a tight spherical 2-design

(a regular simplex) on Sn−1(r1) ⊂ Rn. Type

[
3 2

3

]
coherent configuration

means X1 and X2 are SRGs on Sn−1(r1) and Sn−1(r2) respectively.

The following result was proved by [Etsuko B, New Examples of Euclidean tight
4-designs, Europ. J. Comb., 2009].
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Theorem. [Etsuko B] (2009).
Let (X,w) be a Euclidean tight 4-design on a union S1(r1) ∪ S2(r2) of two con-
centric spheres of radius r1 and r2. Let X = X1 ∪ X2. In the following A(Xi, Xj)
= {x · y | x ∈ Xi, y ∈ Xj, x ̸= y}, where x · y is the canonical inner product of x
and y. If |X1| = n + 1, then (X,w) is similar to one of the following.

(1) n = 2, |X1| = |X2| = 3, r1 = 1, r2 = r ̸= 1, w1 = 1, w2 = 1
r3 ,

A(X1) = {−1
2
}, A(X2) = {−1

2
r2}, A(X1, X2) = {1

2
r,−r}.

(2) n = 4, |X1| = 5, |X2| = 10, r1 = 1, r2 = 1√
6
, w1 = 1, w2 = 27,

A(X1) = {−1
4
}, A(X2) = { 1

36
,−1

9
}, A(X1, X2) = {1

6
,−1

4
}.

(3) n = 5, |X1| = 6, |X2| = 15, r1 = 1, r2 =
√

8
5
, w1 = 1, w2 = 1

2
,

A(X1) = {−1
5
}, A(X2) = {2

5
,−4

5
}, A(X1, X2) = {2

5
,−4

5
},

(4) n = 6, |X1| = 7, |X2| = 21, r1 = 1, r2 =
√
15, w1 = 1, w2 = 1

81
,

A(X1) = {−1
6
}, A(X2) = {9

2
,−6}, A(X1, X2) = {1,−5

2
}.

(5) n = 22, |X1| = 23, |X2| = 253, r1 = 1, r2 =
√

126
11

,

w1 = 1, w2 = 1
81
, A(X1) = {− 1

22
}, A(X2) = {45

22
,−117

44
},

A(X1, X2) = {21
44
,−12

11
}.
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In above, for n = 4, 5, 6, X2 has the structure of the Johnson association scheme
J(n + 1, 2). For n = 22, X2 has the structure of tight 4-(23, 7, 1) design in the
Johnson scheme J(23, 7).

If |X1| = n + 2, then n = 4 and (X,w) is similar to the Euclidean tight 4-design
with the parameters given below. Moreover X2 has the structure of the Hamming
scheme H(2, 3), that is, trivial tight 4-design of the Hamming scheme.

|X1| = 6, |X2| = 9, r1 = 1, r2 =
√
2, w1 = 1, w2 = 1

3
,

A(X1) = {0,−1
2
}, A(X2) = {1

2
,−1}, A(X1, X2) = {1

2
,−1}.

If |X1| ≥ n + 3 and 2 ≤ n ≤ 77. Then n = 22, |X1| = 33, and (X,w) is similar to
the Euclidean tight 4-design with the parameters given below. Moreover X2 has
the structure of tight 4-design in the Hamming scheme H(11.3).

|X1| = 33, |X2| = 243, r1 = 1, r2 =
√
11, w1 = 1, w2 = 1

81
,

A(X1) = {0,−1
2
}, A(X2) = {2,−5

2
}, A(X1, X2) = {1

2
,−1}.

Now, I would like to explain some new ongoing developments for the study of this
case |X1| ≥ n + 3.
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So, in what follows we may assume without loss of generality that

n + 3 ≤ |X1| ≤ |X2| ≤
(
n + 2

2

)
− (n + 3),

and the c.c. is of type

[
3 2

3

]
, since the cases |X1| = n + 1 and n + 2 were already

solved in [Etsuko B](2009).

Now we have a new:

Theorem. Let (X,w) be a tight Euclidean 4-design on two concentric spheres in
Rn. Then n = (2m + 1)2 − 3 for some positive integer m. (Here, |X1| ≥ n + 3 is
assumed as mentioned above.)
(This was conjectured in [Etsuko B,2009] and [BB, 2010].)

Now, we want to discuss the context of our paper: [BB, Contemporary Math.](2010):
Euclidean designs and coherent configurations.
and some new developments.
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The basic idea of the proof in [Etsuko B, 2009] and [BB, 2010] is as follows. The
Fundamental Relations were very basic. Using that we can determine the (nor-
malized) inner product sets
A(X1, X1) = {α1, α2}, A(X2, X2) = {β1, β2} and A(X1, X2) = {γ1, γ2} to be ex-
pressed only using the parameters n and N1, say.

Then using the fact that X1 and X2 are both 2-distance sets, using the Larman-
Rogers-Seidel’s theorem (1977), we expect that (2−α1−α2

α1−α2
)2 and (2−β1−β2

β1−β2
)2 to be the

square of some odd integers.

In fact, just very recently (in 2021), we succeeded in proving that(
2 − α1 − α2

α1 − α2

)2

=

(
2 − β1 − β2

β1 − β2

)2

= n + 3.

And this gives the Theorem.
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Theorem.(Theorem 1.8 in [BB, Contemporary Math](2010).)

The following is a family of feasible parameters for tight Euclidean 4-design in
Rn. That is, the condition that the intersection numbers pk

i,j of associated coherent
configuration are all nonnegative integers is satisfied.

n = (6k − 3)2 − 3, with any positive integer k,
|X1| = (6k2 − 6k + 1)(36k2 − 36k + 7), |X2| = 3(36k2 − 36k + 7)(2k − 1)2,

A(X1) =
{

18k2−27k+8
6(9k2−9k+1)(2k−1)

,− 18k2−9k−1
6(9k2−9k+1)(2k−1)

}
,

A(X2) =
{

36k3−54k2+25k−4
2(6k2−6k+1)(18k2−18k+5)

,− 36k3−54k2+25k−4
2(6k2−6k+1)(18k2−18k+5)

}
,

A(X1, X2) =
{√

36k2−36k+4
(36k2−36k+6)(36k2−36k+10)

, −
√

36k2−36k+10
(36k2−36k+6)(36k2−36k+4)

}
,

r1 = 1, r2 =
√

3(18k2−18k+5)(6k2−6k+1)

9k2−9k+1
,

w(x) = 1 for x ∈ X1 and w(x) = 1
81(2k−1)4

for x ∈ X2.
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Our original observation was that the feasible parameter set in Theorem 1.8 (in

[BB, 2010) may be the only possible parameters of such tight Euclidean 4-designs
with p = 2, except for some already known small solutions, and we confirmed up
to certain n.

Moreover, we could prove the following holds. Let (X,w) be a tight Euclidean
4-design on two concentric spheres in Rn. Then it must be one of the following
possibility holds. (i) It must be one of those listed in this slide. or (ii) the param-
eters (of the coherent configuration) must be those listed in Theorem 1.8 of [BB,
Contemporary Math](2010), or (iii) the following diophantine equation must have
integer solutions.

−16(n + 1)2(n2 + 3n − 2x + 2)y4 + 32x(n + 1)2(n2 + 3n − 2x + 2)y3

−8nx2(3n + 7)(n2 + 3n − 2x + 2)y2

+8x3(n2 + 3n − 2)(n2 + 3n − 2x + 2)y
−x3(x − 1)(n + 2)2(n2 + 3n − 2x) = 0.

As soon as we showed this to Ziqing Xiang, he found some exceptional solutions
for this diophantine equations, and for n ≤ 106, the following are the only solutions
(Ziqing Xiang).
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Here (n, x = N2, y = m2) with (n+2)(n+1)

4
≤ x ≤ (n+2)(n+1)

2
− (n + 3),

and we assume 22 ≤ m ≤ 1000.

(n, x, y) =:
22, 243, 162
838, 250563, 127738(*)
2806, 2861937, 1448811
2806, 3924375, 2130375(*)
235222, 22895695251, 11476301265(*)
235222, 26705685501, 13421360205
248998, 22520234375, 11275031250
373318, 55746874041, 27921744537
373318, 68089612943, 34202664925
3606198, 5623031516635, 2813618431520
3606198, 6138212423005, 3072520122750(*)

22



22

(It is NOT known whether this diophantine equation has only finitely many
exceptional solutions or not.)
By considering the parameters of the corresponding coherent configuration, we can
get contradictions (hence the non-existence of) for the first 4 cases indicated by
(*).

So, this is the most updated situation of the classification problem of tight
Euclidean 4-designs with p = 2. The situation is still very delicate. We would be
happy, if any of you challenge this situation.

Etsuko and I have been visiting Taipei (National Taiwan University) for Decem-
ber 2020-January 2022. We have been working with some researchers in Taiwan,
including Ziqing Xiang, Wei-Hsuan Yu, Chin-Yen Lee, and several students. Here
is one new result. [B, B, Lee, Xiang, Yu, arXiv:2211.02331]

• Let X be a type

[
2 2

3

]
coherent configuration embedded in Rn. Suppose that

X is a 2-distance set in Rn. Then n = 8 and X must be the 45 point set of Lisoněk,
JCT(A), 1997.
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Thank you very much
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