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We first consider Gegenbauer polynomials.

Let w(x) be the real function on the interval [−1, 1] such that

w(x) = (const) × (1 − x2)
n−3
2 with∫ 1

−1

w(x)dx = 1.

The Gegenbauer polynomials Qi(x) are the real coefficients polynomials satisfying:∫ 1

−1

Qi(x)Qj(x)w(x)dx = δi,jαi

where αi are positive real numbers. If we normalize so that

Qi(1) = dim(Harmi(Rn)) =

(
n − 1 + i

i

)
−

(
n − 1 + i − 2

i − 2

)
,

then they are determined uniquely. Actually, they are expressed as follows. (Note
that there are some other normalizations, then the form of the polynomials is
slightly different with those used here.)
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We have as follows.

Q0(x) = 1,
Q1(x) = nt,
2Q2(x) = n(n + 2)(t2 − 1

n
),

6Q3(x) = n(n + 2)(n + 4)(t3 − 3t
n+2

),

24Q4(x) = n(n + 2)(n + 4)(n + 6)
(
t4 − 6t2

n+4
+ 3

(n+2)(n+4)

)
,

120Q5(x) = n(n + 2)(n + 4)(n + 6)(n + 8)
(
t5 − 10t3

n+6
+ 15t

(n+4)(n+6)

)
.

General formula is as follows.

Qℓ(t) = Qℓ,n(t) =
ℓ∑

j=0,i−j≡0(mod 2)

cℓ−jt
j(1 − t2)

ℓ−j
2 ,

where c0 = Qℓ(1)(= hℓ) and each ci, (i = 2, 4, ...,≤ ℓ) are defined by
cℓ−j(ℓ − j)(ℓ − j + n − 3) + (j + 1)(j + 2)cℓ−j−2 = 0.
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The following three term recurrence relations hold.

kℓ

kℓ+1

Qℓ+1(t) = tQℓ(t) − (1 −
kℓ−2

kℓ−1

)Qℓ−1(t),

where kℓ is the coefficient of the highest degree ℓ of the polynomial Qℓ(t) and
satisfies kℓ

kℓ+1
= ℓ+1

n+2ℓ
.

Note that the space of all the polynomials P (Sn−1) on the sphere Sn−1 is de-
composed as:

P (Sn−1)(= Harm0(S
n−1) ⊥ Harm1(S

n−1) ⊥ Harm2(S
n−1) ⊥ · · · · · · .

The following ”Addition Theorem” is known.

• For any x, y ∈ Sn−1 and any non-negative integer ℓ, and for any orthonormal
basis ϕℓ,1, ϕℓ,2, ..., ϕℓ,hℓ

(where hℓ = dimHarmℓ(S
n−1) = dimHarmℓ(Rn)), we have

hℓ∑
i=1

ϕℓ,i(x)ϕℓ,i(y) = Qℓ(x · y)

where x · y is the usual inner product in Rn.
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Recall that any real coefficient polynomial F (x) is expressed as

F (x) =
∞∑
k=0

fkQk(x) (finite sum) .

(called the Gegenbauer expansion).

Theorem. Suppose the Gegenbauer polynomial expression of a real coefficient
polynomial F (x) is given

F (x) =
∞∑
k=0

fkQk(x) (finite sum)

and the following conditions are satisfied:

F (a) ≥ 0 for any a ∈ [−1, 1], F (1) > 0, f0 > 0, and fk ≤ 0 for any k ≥ t + 1.

Then, for a spherical t-design X on Sn−1, the following condition holds:

|X| ≥
F (1)

f0

.
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Proof.
We use the following notation. A(X) = {x · y | x, y ∈ X,x ̸= y} andA′(X) = A(X) ∪ {1}.
Also, for each α ∈ A′(X) the matrix Dα whose rows and columns are indexed by the
elements of X. Namely, Dα(x, y) = 1, if x · y = α, and Dα(x, y) = 0, if x · y ̸= α.
For each α, define

dα =
∑

(x,y)∈X×X

Dα(x, y).

(Note that D1 = I and d1 = |X|.)
Recall that the characteristic matrix Hk for X ⊂ Sn−1 is the |X| × hk-matrix

where the (x, i)-entry is ϕk,i(x) where {ϕk,1(x), ϕk,2(x), . . . , ϕk,hk
(x)} is a fixed or-

thonormal basis of the space Harmk(Rn). Note that X is a spherical t-design if and
only if ||tHkH0|| = 0. i.e., equivalent to

∑
x∈X ϕk,i(x) = 0 for all i with 1 ≤ i ≤ hk.

Now, we have

||tHkH0||2 =

hk∑
i=1

((tHkH0)(i))
2 =

hk∑
i=1

(
∑
x∈X

Hk(x, i))
2 =

hk∑
i=1

(
∑
x∈X

ϕk,i(x)
∑
y∈X

ϕk,i(y))

=
∑

(x,y)∈X×X

hk∑
i=1

ϕk,i(x)ϕk,i(y) =
∑

(x,y)∈X×X

Qk(x · y) =
∑

α∈A′(X)

dαQk(α).
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Therefore, we obtain

(∞)∑
k=0

fk||tHkH0||2 =

(∞)∑
k=0

fk

∑
α∈A′(X)

dαQk(α) =
∑

α∈A′(X)

dαF(α)

= |X|F (1) +
∑

α∈A(X)

dαF (α).

Moreover, since X is a t-design, we have

f0||tH0H0||2 − |X|F (1) =
∑

α∈A(X)

dαF (α) −
(∞)∑

k=t+1

fk||tHkH0||2 .....(2)

Thus we get f0|X|2 − |X|F (1) ≥ 0 by the assumption. So, we get |X| ≥ F (1)

f0
. Also,

if the equality |X| = F (1)

f0
holds, then the right hand side of the above inequality (2)

must be equal to 0. Since dα > 0, for any α ∈ A(X) and fk ≤ 0 for any k ≥ t + 1,
we have F (α) = 0 for any a ∈ A(X) and fk||tHkH0||2 = 0 for any k ≥ t + 1.
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Theorem(Fisher type inequality for spherical 2e-designs).

Let X be a spherical 2e-design on Sn−1. Then the following inequality holds:

|X| ≥
(
n − 1 + e

e

)
+

(
n − 1 + e − 1

e − 1

)
= Re(1),

where Re(x) = Q0(x) + Q1(x) + · · · + Qe(x). Moreover, the equality holds, if and
only if the set A(X) is equal to the set of zeros of Re(x).

Proof. Use F (x) = Re(x)
2. Then we can show that F (1) = Re(1)

2 and f0 = Re(1)
(need some argument). So, we get

|X| ≥ F (1)/f0 ≥ Re(1) =

(
n − 1 + e

e

)
+

(
n − 1 + e − 1

e − 1

)
.

QED
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Theorem(Fisher type inequality for spherical (2e + 1)-designs.

Let X be a spherical (2e + 1)-design on Sn−1. Then we have the following inequal-
ity:

|X| ≥ 2

(
n − 1 + e

e

)
= 2Ce(1),

where Ce(x) = Qe(x) + Qe−2(x) + · · · + Qe−2[ e
2
](x). Moreover, equality holds if and

only if A(X) consists of −1 and the zeros of Ce(x).
(This time, take F (x) = (x + 1)(Ce(x))

2.)

As we have discussed yesterday, those X with equality in one of the above two
theorems are called tight t-designs (t = 2e or t = 2e + 1) and they are almost clas-
sified, exactly speaking exept for t = 4, 5, 7. These Fisher type bound are closely
related to some bound for s-distance sets in Sn−1. Here, I will mention some general
results, without giving the details. Please check the references for further details.

Theorem.
Let X be a finite sbset of Sn−1.
(i) If X is an s-distance set and t-design, we have t ≤ 2s in general.
(ii) If X is an s-distance set, then |X| ≤ Rs(1) =

(
n−1+s

s

)
+

(
n−1+s−1

s−1

)
. If the equality

attains here, then X is a 2s-design, hence a tight spherical 2s-design. (We have
already mentioned that if X is a tight 2s-design, then it is an s-distance set.)
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More on t-designs on Q-polynomial association schemes.

Yesterday, we defined the concept of t-designs on Q-polynomial association
schemes, following Delsarte.

We first remark that the Hamming association scheme H(d, q) and Johnson
association scheme J(v, d) are examples of P-polynomial association schemes and
also of Q-polynomial association schemes. (We need some further discussions to
show why they are Q-polynomial association schemes.)

The following definition of combinatorial t-design t-(v, k, λ) design is well known.
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Definition (Combinatorial t-design).

Let V be a set of v element. Let k be a number 1 ≤ k ≤ v and
(
V

k

)
be the set

of all the k-element subsets of the set V . Let B be a subset of
(
V

k

)
. We assume

1 ≤ t ≤ k. Then a pair (V,B) is called a combinatorial t-design (t -(v, k, λ) design),
if the following condition is satisfied.
For each subset T in

(
V

t

)
, the number |{B ∈ B | T ⊂ B}| is constant λ, i.e., does

not depend on the choice of T .

As you may know, 2-(q2 + q + 1, q + 1, 1) is a projective plane of order q, and
5-(24, 8, 1) is the Witt design related to the Mathieu group of degree 24.

The following fact is well known (Delsarte, 1973). Combinatorial t-(v, k, λ)
design is equivalent to a t-design in the Johnson association scheme. Note that for
the Johson association scheme J(v, k), X =

(
V

k

)
, and let Y be a t-design on J(v, k).

Then the pair (V, Y ) is a combinatorial t-design, and vice versa.
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The concept of t-design in the Hamming association scheme H(d, q) is equivalent
to that of so-called orthogonal arrays. Let X = F × · · · × F be the vertex set of
H(d, q). A subset Y of X is called an orthogonal array if it satisfies the following
condition.

If we fix z = (z1, z2, . . . , zt) ∈ F t and a set

L = {ℓ1, ℓ2, . . . , ℓt}

of {1, 2, . . . , d} which consist of t distinct integers, then the cardinality of the
set {y = (y1, y2, ..., yd) ∈ Y | yℓi = zi (i = 1, 2, ..., t)} equals a constant λ which is
independent of the choices of z and L.

The constant λ is called the index of the orthogonal array. If t is the largest
integer which satisfied this condition, t is called the strength of the orthogonal
array Y .

Usually, an orthogonal array Y is displayed as a |Y | × d-mtrix where each ele-
ment of Y is a row vector. We can show that Y is a t-design in the Q-polynomial
association scheme H(d, q) if and only if the strength of the orthogonal array Y is
at least t.
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For a subset Y of X in a Q-polynomial association scheme X = (X, {Ri}0≤i≤d),
the characteristic matrix Hk is defined as follows. Let ϕk,1, ϕk,2,, . . . , ϕk,mk

be the
orthonormal basis of the space spanned by column vectors of Ek. Then the charac-
teristic matrix Hk is the matrix of size |Y | × mk, whose (y, i)-entry is defined by
ϕk,i(y) where y ∈ Y and 1 ≤ i ≤ mk. Then we have:

(1) ||tHkH0||2 = 0 for 1 ≤ k ≤ t, if and only if Y is a t-design.

(2) For x, y ∈ Y , let (x, y) ∈ Rj. Then

mk∑
i=0

ϕk,i(x)ϕk,i(y) = Qk(j) (Addition Theorem) .

(Note that here Qk(i) is not the Gegenbauer polynomal, but the entry of the second
eigenmatrix Q of the association scheme X. )

So, by a similar argument as we proved the Fisher type lower bound (for spher-
ical 2e-designs), we get the Fisher type lower bound for the size of a t-design in a
Q-polynomial association scheme, as explained in the next page.

13



13

Fisher type lower bound of t-designs in Q-polynomial association schemes.

Theorem. (Delsarte, 1973).
Let X = (X, {Ri}0≤i≤d) be a Q-polynomial association scheme. Let Y ⊂ X be a
2e-design in X. Then we have

|X| ≥ m0 + m1 + · · · + me,

where mi = rank(Ei).
We call X is a tight 2e-design in the Q-polynomial association scheme, if the

equality holds in the above inequality.

Theorem. (Delsarte, 1973).
Let X = (X, {Ri}0≤i≤d) be a Q-polynomial association scheme. Let Y ⊂ X be a
tight 2e-design in X. Then the zeros of the polynomial v∗

0(x) + v∗
1(x) + · · · + v∗

e(x)
must be in the set {θ∗

1, θ
∗
2, · · · , θ∗

e} where θ∗
i = Q1(i), the entries of the i-th column

of the second eigenmatrix Q of the association scheme X.

In the next section, we state what are the current status of the classification
problems of tight t-designs in J(v, d) and H(d, q). We will also mention the current
status for other known P-and Q-polynomial association schemes.
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Classification of tight combinatorial t-designs.

It is known (first remarked by Delsarte) that t-designs in the Johnson association
scheme J(v, k) are the same as the combinatorial t-(v, k, λ) design for some λ.
Since mi =

(
v

i

)
−

(
v

i−1

)
for J(v, k), a tight t(= 2e)-design has size

(
v

e

)
. The following

is a brief history of the classification problem of tight combinatorial 2e-designs.
For simplicity we consider the case of t is even. The case for t odd is a kind of
follows if the case t(=even) is solved.

(1) e = 1, there are many examples (i.e., symmetric 2-designs) and the classifica-
tion seems to be hopeless.
(2) e = 2, there are exactly two such designs, i.e., the 4-(23, 7, 1) designs and the
4-(23, 16, 52) design (Enomoto-Ito-Noda, 1975). (For a new simplified proof by
Noda, see the book of BBIT, De Gruyter, 2021.)
(3) e = 3, there are no tight 6-designs (Peterson, 1977).
(4) e = 4, there are no tight 8-designs (Z. Xiang, 2018).
(5) For each fixed e ≥ 5, there are only finitely many tight 2e-designs (Bannai,
1977).
(6) For 5 ≤ e ≤ 9, there are no tight 2e-designs (Dukes and Short-Gershman, 2013).
(7) Main Theorem (Ziqing Xiang, arXiv:2312.14778). There are no tight 2e-designs
for e ≥ 10. (This completely solved the classification problem of tight 2e-designs
for all e ≥ 2.)
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The classification of tight t-designs in H(n, q).

Tight 2e-design in H(n, q) is an orthogonal array of strength 2e. The Fisher type
lower bound |X| ≥ m0 + m1 + · · · + me =

∑e
i=0

(
n

i

)
(q − 1)i was known earlier by C.

R. Rao (1947). The classification of tight 2e-designs for e ≥ 3 was finally obtained
by Y. Hong (1986) except possibly q = 2. (Interestingly enough, the classification
of tight 2e-designs in H(n, 2) (only for q = 2) is still open. The classification of
tight 4-designs was studied by R. Noda (1979), and the complete classification was
finally obtained by Gavrilyuk-Suda-Viladi (2020). (Similar remark for odd t, as in
the case of Johnson association scheme. There is work by Noda (1986) for t = 5
and t = 3.)

For known families of P-and Q-polynomial association scheme, L. Chihara (1987)
proved the general non-existence results of tight t-designs except for very small t.
On the other hand, it seems that the general non-existence result of tight t-designs
(for large t) for unknown P-and Q-polynomial association scheme is still open, I
think.
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Leonard’s Theorem for P-and Q-polynomial association schemes.

The classification problem of P-and Q-polynomial association schemes was one
of the most important target of the theory of association schemes, as well as alge-
braic combinatorics. This means that there are two sets of (discrete) orthogonal
polynomials {vi(x)} and {v∗

i (x)} and they are related by the relation

vi(θj)

ki

=
v∗
j (θ

∗
i )

mj

.

Then what are these sets of orthogonal polynomials satisfying these restrictions,
purely at the level of orthogonal polynomials, forgetting about association schemes?
Doug Leonard (1982, 1984) answered to this question, by finding that they are
described by small number of free parameters and they must be described by
Askey-Wilson orthogonal polynomials, or their special cases or their limiting cases.
(Askey- Wilson polynomials were extremely important classes of orthogonal poly-
nomials described by using basic hyper-geometric series (with some base q) and
in addition these orthogonal polynomials were discovered just before Leonard ob-
tained his theorem). Leonard’s theorem was a big breakthrough, and this made
a big bridge between algebraic combinatorics and orthogonal polynomials. Then,
Bannai-Ito (1984) Algebraic Combinatorics I, made the detailed description of
these families of orthogonal polynomials, dividing essentially into the three cases,
q ̸= ±1, q = 1 and q = −1. Then P. Terwilliger worked out more, and published
the following papers first in 2001 and again in 2021.
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P. Terwilliger : Two linear transformations each tridiagonal with respect to an
eigenbasis of the other. Linear Algebra Appl. (2001).

P. Terwilliger : Notes on the Leonard system classification. Graphs Comb. (2021).
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Askey-Wilson orthogonal polynomials and Askey scheme (tableau).

The following paper studies P-and Q-polynomial association schemes (Leonard
pairs) from the view point of Askey scheme.

P. Terwilliger: An algebraic approach to the Askey scheme of orthogonal polyno-
mials, in ”Orthogonal polynomials and special functions. Computation and appli-
cations”, Lecture Notes in Mathematics 1883, 255-330 (2006).

This paper gives a description of the intimate connection between certain Leonard
pairs and a special class of orthogonal polynomials (the‘terminating’branch of the
Askey scheme: q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk,
affine q-Krawtchouk, Racah, Hahn, dual Hahn, Krawtchouk, Bennai/Ito and or-
phan polynomials).

The Askey scheme is a way of organizing orthogonal polynomials of hyperge-
ometric or basic hypergeometric type into a hierarchy. At the top of its scheme
lies the q-Racah polynomials (namely, Askey-Wilson polynomials). So the detailed
descriptions of Leonard’s theorem (classification of Leonard pairs) occupied a very
important role in Askey scheme. Anyway, it would be very interesting to study the
classification problem of P-and Q-polynomial association schemes from the view-
point of Askey scheme of orthogonal polynomials.

(To be continued)
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