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Spherical codes and designs, in particular spherical t-designs

Sn−1 =
{
(x1, x2, . . . , xn) ∈ Rn | x2

1 + x2
2 + · · · + x2

n = 1
}
,

X ⊂ Sn−1, 0 < |X| < ∞.

The minimum distance d(X) of X is defined by

d(X) = Min {d(x, y) | x, y ∈ X,x ̸= y}.

Here, d(x, y) = ∥x − y∥ (Euclidean distance in Rn). We also consider the inner
product (x, y), and the angle θ(x, y) (= geodesic distance).

Note that they are related by cos(θ(x, y)) = (x, y) and (x, y) = 1 − 1
2
d(x, y)2

To study finite set X of Sn−1, there are (at least) two different view-
points: (i) Coding theoretical viewpoint and (ii) Design theoretical
viewpoint. The coding theoretical view is to find a finite subset that
is scattered as much as possible, i.e., points are separated as much as
possible. The design theoretical view is to find a finite subset that
approximates the whole space as much as possible.
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(i) Coding theoretical viewpoint

(a) Tammes Problem.
|X| is given. Make the minimum distance d(X) of X as large as
possible.

What will happen, if |X| = 1, 2, 3, 4, 5, 6, . . . . . . ?

The answer is known for |X| ≤ 14 and |X| = 24.
(See Ericson-Zinoviev: Codes on Euclidean Spheres (2001).)

The following is a quote from: The Tammes problem for N = 14, by Oleg R.
Musin, Alexey S. Tarasov, Exp. Math. (2015).

The Tammes problem is to find the arrangement of N points on a unit sphere
which maximizes the minimum distance between any two points. This problem is
presently solved for several values of N , namely for N = 3, 4, 6, 12 by L. Fejes Toth
(1943); for N = 5, 7, 8, 9 by Schutte and van der Waerden (1951); for N = 10, 11
by Danzer (1963) and for N = 24 by Robinson (1961). Recently, we solved the
Tammes problem for N = 13. The optimal configuration of 14 points was conjec-
tured more than 60 years ago. In the paper, we give a solution of this long-standing
open problem in geometry. Our computer-assisted proof relies on an enumeration
of the irreducible contact graphs.
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(b) Kissing Number Problem.
The minimum distance d(X) of X is given. Make |X| as large as possible.

If the minimum distance d(X) of X is 1 in Euclidean distance (or equivalently
π/3(= 60◦) in the geodesic distance, or the inner product is 1/2), then we have
the famous Kissing number problem in Rn.

k(2) = 6 (obvious),
k(3) = 12 (There is a long history for this problem starting Newton-Gregory

dispute in 1694. Shütte-van der Waerden, 1953),
k(4) = 24 (Musin, 2008),
k(8) = 240 (Odlyzko-Sloane, Levenshtein, 1979),
k(24) = 196560 (Odlyzko-Sloane, Levenshtein, 1979).
(k(n) for other values of n are open !)
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There are some other problems of coding theoretical nature.

(c) s-distance set problem on Sn−1.

X ⊂ Sn−1 is called an s-distance set on Sn−1,
if |{d(x, y) | x, y ∈ X, x ̸= y}| = s
(or some people allow this number to be at most s, instead of exactly s.)

Problem. If X is a 1-distance set in Sn−1, then |X| ≤ n + 1.
Moreover, if |X| = n + 1, then X must be a regular simplex. (Exercise.)

Results. (i) It is known that if X is an s-distance set on Sn−1, then

|X| ≤
(
n − 1 + s

s

)
+

(
n − 1 + s − 1

s − 1

)
.
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(ii) It is an interesting problem to classify s-distance set X on Sn−1 with
|X| =

(
n−1+s

s

)
+

(
n−1+s−1

s−1

)
.

Examples are known for (s, n) = (2, 6) and (s, n) = (2, 22).
It is known that for s ≥ 3 there is no s-distance set X on Sn−1 with

|X| =
(
n−1+s

s

)
+

(
n−1+s−1

s−1

)
.

(The classification problem is still open for s = 2.)
(It is known that n must be (an odd integer)2 − 3. The case n = 118 is the smallest
open case. Namely, non-existence for n = 46, 78.)
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Related Problems.

(1) We can consider s-distance sets in Rn instead of Sn−1. (Or, for any metric
space.)
(Question: Can you find 2-distance sets X in R3 with |X| = 6 ?

Can you find how many different such examples are there ?)
It is known that if X is an s-distance set in Rn, then |X| ≤

(
n+s

s

)
.

(1-a) Can you prove for s = 1. Can you classify those with |X| = n + 1(=
(
n+1

1

)
).

(1-b) One example for s = 2 with |X| =
(
n+2

2

)
is known for n = 8 (Lisoněk,

1997). No other example with |X| =
(
n+s

s

)
is known for any s ≥ 2 and n ≥ 2.

(Whether there is any other example is a famous open problem.)

It seems that the classifications of maximum 2-distance sets in Rn have been
obtained recently by Chin-Yen Lee, Yu-Hang Sheng, Meng-Tsung Tsai, and Wei-
Hsuan Yu, for n ≤ 14, generalizing the work of Lesoněk. (The paper is in prepa-
ration.)

7



7

Further related problems. (Homework problems)

We call a subset X in Rn an s inner product set in Rn, if |{x · y | x, y ∈ X,x ̸= y}| = s.

(1-i) Can you prove that |X| ≤ n + 1, if X is a 1-inner product set ?

(1-ii) Can you find some examples of 1-inner product sets in Rn ? For n = 2 ?
For n = 3? For n = 4?

(1-iii) Suppose that X is on two concentric spheres with the centers at the
origin. Can you characterize such 1-inner product sets in Rn with |X| = n + 1 ?

More generally, can you characterize general 1-inner product sets in Rn with
|X| = n + 1 ? (May be difficult !)

It is known that if X is an s-inner product set in Rn, then |X| ≤
(
n+s

s

)
. (Deza-

Frankl, 1985, Proc. AMS. See also Nozaki, 2011 Combinatorica.)

No example of an s-inner product set in Rn, with |X| =
(
n+s

s

)
is known for any pair

(s, n) with s ≥ 2 and n ≥ 2.
(I think this is an open problem, but I believe no one has tried seriously to find
examples with |X| =

(
n+s

s

)
. Please try to find some examples ! )
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Possible Research Problem! We may be able to consider s-distance sets in more
general metric spaces.

Fedor Petrov, Cosmin Pohoata: A remark on sets with few distances in Rd. Proc.
Am. Math. Soc. 149 (2021).

Gábor Hegedüs, Lajos Rónyai: An upper bound for the size of s- distance sets in
real algebraic sets. Electron. J. Comb. 28 (2021).
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Some other problems of coding theoretical flavor.

(d) Coulomb-Thomson Problem.
Let N be a natural number. Among all N -element subset X = {x1, x2, ..., xN} of
Sn−1, find subsets that minimize the following value∑

1≤i<j≤N

1

∥xi − xj∥
.

Also, determine this minimum value as well as the structure of such sets.
It is possible to consider a similar problem for many other energy functions.

(e) The covering radius Problem.
Let N be a natural number. Among all N -element subset X = {x1, x2, . . . , xN} of
Sn−1, find subsets that minimize the following value:

Maxx∈Sn−1{Min1≤i≤N(d(x, xi))}

This minimum value is called the covering radius of the set X. Also, determine
this minimum value as well as the structure of such sets.
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Design theoretical viewpoint
(We want to approximate the whole space by a smaller finite subset.)

Spherical t-designs(Delsarte-Goethals-Seidel, 1977).

A finite subset X ⊂ Sn−1 is called a spherical t-design on Sn−1, if one of the
following equivalent conditions is satisfied, where t is a positive integer.

1

|Sn−1|

∫
Sn−1

f(x)dσ(x) =
1

|X|
∑
x∈X

f(x),

for ∀f(x) = f(x1, x2, . . . , xn), polynomials of degree ≤ t,

⇐⇒
∑
x∈X

f(x) = 0 for ∀f(x) ∈ Harmi(Rn), 1 ≤ i ≤ t,

⇐⇒
∑

(x,y)∈X×X

Qi(x · y) = 0, 1 ≤ i ≤ t,

(Qi(x) = Gegenbauer polynomial)
⇐⇒ any moment of X of degree ≤ t is invariant under

orthogonal transformations,
(⇐⇒ many other equivalent conditions.)
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(1) Examples of t-designs on Sn−1

For n = 2, the t + 1 vertices of a regular (t + 1)-gon inscribed on S1(⊂ R2) form
a t-design. (So, we mostly consider the cases n ≥ 3 in what follows.)

For n = 3, the set of vertices of a regular polyhedron X inscribed in S2 are,
spherical 2, 3, 3, 5, 5-designs for regular simplex (4 vertices), regular octahedron (6
vertices), cube (8 vertices), regular icosahedron (12 vertices), and regular dodeca-
hedron (20 vertices), respectively.

Challenging Problems. Can you find some spherical t-designs for large t in S2 ?

Many examples are obtained either as

(a) an orbit of a finite group G ⊂ O(n), or

(b) a shell of a lattice L ⊂ Rn,

i.e., X = { 1√
m
x | x ∈ L, x · x = m} for a fixed m.

However, those known examples are always

t ≤ 19 for (a) (for n ≥ 3)

t ≤ 11 for (b) (for any n).

It is open whether t is always bounded by an absolute constant independent
of n in each of the cases (a) and (b) !
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Some easy looking problems.

• Is there any spherical 6-design on a shell of a lattice L in R2?

• Is there any spherical 4-design on a shell of a lattice L in R3?

• Is there any spherical 4-design on S1 whose coordinates are all rational numbers?
(Also the same question for bigger t?)
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(2) Existence of spherical t-design on Sn−1

• There exist t-designs on Sn−1 for ∀n and ∀t !
(Seymour-Zaslavsky, Advances in Math., 1984)

• There are many proofs known, but they are mostly existence theorems, and
good explicit constructions are not known.

• The best existence result is due to Bondarenko-Radchenko-Viazovska (Annals
of Math.,2013) that shows the existence of spherical t-designs on Sn−1 with the
sizes asymptotically the same order as the best possible bound, if n is fixed and
t → ∞. Namely, they showed that there is a constant cn−1 for each n such that
for each integer N ≥ cn−1t

n−1, there exists a spherical t-design X of size |X| = N .
(How about the case when t is fixed and n → ∞ ? I think this is still open.)

• Most of known existence proofs use the continuous property of real numbers.
A new existence proof was obtained by Zhen Cui, Jiacheng Xia, and Ziqing Xiang:
”Rational designs” (Advances in Math., 2019) that uses analytic number theory:
Hilbert-Kampe problem.
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(3) Explicit construction of spherical t-designs on Sn−1 (n ≥ 3)

• Some are known (Kuperberg, 2005, for n = 3). See also,
for n = 3, |X| = (t + 1)2 with t ≤ 100 (Chen-Frommer-Lang, 2011)

• General Case: Ziqing Xiang, Explicit spherical designs, (Algebraic Combina-
torics, 2022)

• See also Bannai-Nakata-Okuda-Zhao: Explicit construction of exact unitary

designs, Advances in Math. 2022.
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(4) Lower bounds for |X| (Fisher type lower bound)

|X| ≥
(
n − 1 + e

e

)
+

(
n − 1 + e − 1

e − 1

)
, if t = 2e,

|X| ≥ 2

(
n − 1 + e

e

)
, if t = 2e + 1,

“ = ” holds ⇐⇒ X is called a tight spherical t-design.

(5) Let X be a t-design and s-distance set, i.e.,
s = |A(X)|, where A(X) = {x · y | x, y ∈ X,x ̸= y}. Then
(i) t ≤ 2s.
(ii) t = 2s ⇐⇒ X is a tight 2s-design.
(iii) t = 2s − 1 and X is antipodal ⇐⇒ X is a tight (2s − 1)-
design.
(iv) t ≥ 2s − 2 =⇒ X has the structure of a Q-polynomial asso-
ciation scheme.
(v) t ≥ 2s − 3 and X is antipodal =⇒ X has the structure of a
Q-polynomial association scheme.
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Classification of tight t-design on Sn−1

n = 2 =⇒ X is a regular (t + 1)-gon
(So we assume n ≥ 3 in what follows)

• We get t ∈ {1, 2, 3, 4, 5, 7, 11} (Bannai-Damerell, 1979,1980).

Tight t-designs on Sn are classified for all t, except t = 4, 5, 7.
Some further non-existence results for t = 4, 5, 7 are known.
(Bannai-Munemasa-Venkov (2004), Nebe-Venkov (2013).)
But the problem is still open for t = 4, 5, 7.

t = 1 =⇒ X is an antipodal pair (|X| = 2)
t = 2 =⇒ X is a regular simplex (|X| = n + 1)
t = 3 =⇒ X is a cross-polytope (|X| = 2n)

t = 4 =⇒ n = (an odd integer)2 − 3, and only two examples with

(n, |X|) = (6, 27), (22, 275) are known
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t = 5 =⇒ n = 3 or n = (an odd integer)2 − 2,
and only three such examples with (n, |X|) = (3, 12), (7, 56),
(23, 552) are known.

t = 7 =⇒ n = 3(an integer)2 − 4, and
only two such examples with (n, |X|) = (8, 240), (23, 4600)
are known.

t = 11 =⇒ (n, |X|) = (24, 196560), and X is unique
(Bannai-Sloane (1981)).

To be Continued.

Thank you !
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